Searched refs:denominator (Results 1 - 8 of 8) sorted by relevance

/inkscape/src/libcola/
H A Dcola.h75 double denominator=X[v]-X[u]; local
76 if(fabs(denominator)<0.001) {
79 denominator=Y[v]-Y[u];
81 if(fabs(denominator)<0.0001) {
82 denominator=1;
84 t=numerator/denominator;
H A Dgradient_projection.cpp87 double numerator = 0, denominator = 0, r; local
94 denominator -= 2.0 * r*g[i];
96 double alpha = numerator/denominator;
127 numerator = 0, denominator = 0;
134 denominator += 2.0 * r * d[i];
137 (*it)->betaCalc(numerator,denominator);
139 double beta = numerator/denominator;
H A Dgradient_projection.h161 * add dummy vars' contribution to numerator and denominator for
164 void betaCalc(double &numerator, double &denominator) { argument
169 denominator += r*dl - r * dr;
/inkscape/src/2geom/
H A Dcoord.cpp1381 Bignum* denominator,
1387 Bignum* numerator, Bignum* denominator,
1390 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
1396 Bignum* numerator, Bignum* denominator,
1400 Bignum* numerator, Bignum* denominator,
1432 Bignum denominator;
1439 &numerator, &denominator,
1443 &numerator, &denominator,
1448 GenerateShortestDigits(&numerator, &denominator,
1454 &numerator, &denominator,
[all...]
H A Dgeom.cpp62 * If the denominator (bd-ae) is 0 then the lines are parallel, if the
73 double denominator = dot(Geom::rot90(n0), n1); local
78 if (denominator == 0) {
89 result = Geom::Point(X, Y) / denominator;
H A Dbezier-utils.cpp472 /// NewtonRaphsonRootFind handles non-positive denominator.
595 double denominator = dot(Q1_u, Q1_u) + dot(diff, Q2_u);
598 if ( denominator > 0. ) {
601 improved_u = u - ( numerator / denominator );
/inkscape/src/extension/internal/
H A Dimage-resolution.cpp189 return double(r.numerator) / double(r.denominator);
202 return double(r.numerator) / double(r.denominator);
/inkscape/src/live_effects/
H A Dlpe-copy_rotate.cpp53 double denominator = (p1[X]*(p2[Y] - p3[Y]) + p1[Y]*(p3[X] - p2[X]) + p2[X]*p3[Y] - p2[Y]*p3[X]); local
54 double t1 = (p[X]*(p3[Y] - p1[Y]) + p[Y]*(p1[X] - p3[X]) - p1[X]*p3[Y] + p1[Y]*p3[X]) / denominator;
55 double t2 = (p[X]*(p2[Y] - p1[Y]) + p[Y]*(p1[X] - p2[X]) - p1[X]*p2[Y] + p1[Y]*p2[X]) / -denominator;

Completed in 53 milliseconds