/inkscape/src/2geom/ |
H A D | solve-bezier-parametric.cpp | 19 crossing_count(Geom::Point const *V, unsigned degree); 21 control_poly_flat_enough(Geom::Point const *V, unsigned degree); 23 compute_x_intercept(Geom::Point const *V, unsigned degree); 37 unsigned degree, /* The degree of the polynomial */ 42 const unsigned max_crossings = crossing_count(w, degree); 52 solutions.push_back((w[0][Geom::X] + w[degree][Geom::X]) / 2.0); 58 if (control_poly_flat_enough(w, degree)) { 59 solutions.push_back(compute_x_intercept(w, degree)); 67 //Geom::Point Left[degree 36 find_parametric_bezier_roots(Geom::Point const *w, unsigned degree, std::vector<double> &solutions, unsigned depth) argument 85 crossing_count(Geom::Point const *V, unsigned degree) argument 109 control_poly_flat_enough(Geom::Point const *V, unsigned degree) argument 170 compute_x_intercept(Geom::Point const *V, unsigned degree) argument [all...] |
H A D | solver.h | 49 unsigned degree); /* Degree of Bezier curve */ 53 unsigned degree, /* The degree of the polynomial */ 59 unsigned degree, /* Degree of Bezier curve */ 66 unsigned degree, /* The degree of the polynomial */
|
H A D | solve-bezier-one-d.cpp | 12 * linearity of the function. This requires an O(degree^2) subdivision for each step, even when 31 size_t degree, N; member in class:Geom::Bernsteins 37 : degree(_degree), N(degree+1), solutions(sol), bc(degree) 55 unsigned degree, /* The degree of the polynomial */ 60 Bernsteins B(degree, solutions); 69 Bernsteins B(bz.degree(), solutions); 112 const double Ay = w[degree] 54 find_bernstein_roots(double const *w, unsigned degree, std::vector<double> &solutions, unsigned depth, double left_t, double right_t, bool ) argument [all...] |
H A D | choose.h | 107 return degree() +1; 110 unsigned int degree() const function in class:Geom::BinomialCoefficient
|
H A D | bezier-curve.h | 174 template <unsigned degree> 186 inner = D2<Bezier>(Bezier(Bezier::Order(degree)), Bezier(Bezier::Order(degree))); 202 if (ord != degree) THROW_LOGICALERROR("BezierCurve<degree> does not match number of points"); 260 if (degree == 1) { 267 if (degree == 1) { 308 template <unsigned degree> 310 Curve *BezierCurveN<degree>::derivative() const { 311 return new BezierCurveN<degree [all...] |
H A D | toposweep.cpp | 11 ix %= degree(); 16 ix %= degree(); 21 ix %= degree(); 29 ix %= degree(); 38 for(; i < degree(); i++) 45 if(v.degree()) { 46 jx %= v.degree(); 50 if(v.degree()) { 64 if(vertices[i].degree() != 0) vertices[ix++] = vertices[i]; 68 for(unsigned j = 0; j < vertices[i].degree(); [all...] |
H A D | polynomial.cpp | 48 result.resize(degree() + p.degree()+1); 85 gsl_complex_packed_ptr z = new double[p.degree()*2]; 90 //roots.resize(p.degree()); 97 for (unsigned int i = 0; i < p.degree(); i++) { 188 const unsigned k = a.degree(); 189 const unsigned l = b.degree();
|
H A D | bezier-utils.h | 48 Point bezier_pt(unsigned degree, Point const V[], double t);
|
H A D | bezier.cpp | 160 for(unsigned i = degree(); i < newDegree; i++) { 188 c_ += other.elevate_to_degree(degree()).c_; 190 *this = elevate_to_degree(other.degree()); 201 c_ -= other.elevate_to_degree(degree()).c_; 203 *this = elevate_to_degree(other.degree());
|
H A D | forward.h | 75 template <unsigned degree> class BezierCurveN;
|
H A D | bezier-utils.cpp | 648 * \param degree The degree of the Bezier curve: 3 for cubic, 2 for quadratic etc. Must be less 650 * \param V The control points for the Bezier curve. Must have (\a degree+1) 666 bezier_pt(unsigned const degree, Point const V[], double const t) 673 assert( degree < 4); 681 for (unsigned i = 1; i < degree; ++i) { 686 Point ret = spow[degree] * V[0]; 687 for (unsigned i = 1; i <= degree; ++i) { 688 ret += pascal[degree][i] * spow[degree [all...] |
H A D | polynomial.h | 54 unsigned degree() const { return size()-1;} function in class:Geom::Poly 206 * find all p.degree() roots of p. 207 * This function can take a long time with suitably crafted polynomials, but in practice it should be fast. Should we provide special forms for degree() <= 4?
|
H A D | toposweep.h | 103 inline unsigned degree() const { return enters.size() + exits.size(); } function in class:Geom::TopoGraph::Vertex 121 //returns a graph with all zero degree vertices and unused edges removed
|
H A D | solve-bezier.cpp | 11 * function. This requires an O(degree^2) subdivision for each step, even when there is only one 132 if (bz.degree() == 1) {
|
H A D | bezier.h | 148 unsigned degree() const { return order(); } function in class:Geom::Bezier
|
/inkscape/src/2geom/numeric/ |
H A D | fitting-model.h | 154 LFMPowerBasis(size_t degree) argument 155 : m_size(degree + 1) 185 LFMPoly(size_t degree) argument 186 : LFMPowerBasis<Poly>(degree) 472 template <unsigned degree> 474 : public LinearFittingModel< double, Point, BezierCurveN<degree> > 478 : mob(degree+1) 492 void instance(BezierCurveN<degree> & bc, ConstMatrixView const& raw_data) const 494 Bezier bx(degree); 495 Bezier by(degree); [all...] |
/inkscape/src/libcola/ |
H A D | cola.cpp | 58 double degree = 0; local 65 degree+=lap2[i][j]=w>1e-30?1.f/(w*w):0; 67 lap2[i][i]=-degree; 124 double degree = 0; local 131 degree -= L_ij; 135 b[i] += degree * coords[i];
|