Searched refs:degree (Results 1 - 17 of 17) sorted by relevance

/inkscape/src/2geom/
H A Dsolve-bezier-parametric.cpp19 crossing_count(Geom::Point const *V, unsigned degree);
21 control_poly_flat_enough(Geom::Point const *V, unsigned degree);
23 compute_x_intercept(Geom::Point const *V, unsigned degree);
37 unsigned degree, /* The degree of the polynomial */
42 const unsigned max_crossings = crossing_count(w, degree);
52 solutions.push_back((w[0][Geom::X] + w[degree][Geom::X]) / 2.0);
58 if (control_poly_flat_enough(w, degree)) {
59 solutions.push_back(compute_x_intercept(w, degree));
67 //Geom::Point Left[degree
36 find_parametric_bezier_roots(Geom::Point const *w, unsigned degree, std::vector<double> &solutions, unsigned depth) argument
85 crossing_count(Geom::Point const *V, unsigned degree) argument
109 control_poly_flat_enough(Geom::Point const *V, unsigned degree) argument
170 compute_x_intercept(Geom::Point const *V, unsigned degree) argument
[all...]
H A Dsolver.h49 unsigned degree); /* Degree of Bezier curve */
53 unsigned degree, /* The degree of the polynomial */
59 unsigned degree, /* Degree of Bezier curve */
66 unsigned degree, /* The degree of the polynomial */
H A Dsolve-bezier-one-d.cpp12 * linearity of the function. This requires an O(degree^2) subdivision for each step, even when
31 size_t degree, N; member in class:Geom::Bernsteins
37 : degree(_degree), N(degree+1), solutions(sol), bc(degree)
55 unsigned degree, /* The degree of the polynomial */
60 Bernsteins B(degree, solutions);
69 Bernsteins B(bz.degree(), solutions);
112 const double Ay = w[degree]
54 find_bernstein_roots(double const *w, unsigned degree, std::vector<double> &solutions, unsigned depth, double left_t, double right_t, bool ) argument
[all...]
H A Dchoose.h107 return degree() +1;
110 unsigned int degree() const function in class:Geom::BinomialCoefficient
H A Dbezier-curve.h174 template <unsigned degree>
186 inner = D2<Bezier>(Bezier(Bezier::Order(degree)), Bezier(Bezier::Order(degree)));
202 if (ord != degree) THROW_LOGICALERROR("BezierCurve<degree> does not match number of points");
260 if (degree == 1) {
267 if (degree == 1) {
308 template <unsigned degree>
310 Curve *BezierCurveN<degree>::derivative() const {
311 return new BezierCurveN<degree
[all...]
H A Dtoposweep.cpp11 ix %= degree();
16 ix %= degree();
21 ix %= degree();
29 ix %= degree();
38 for(; i < degree(); i++)
45 if(v.degree()) {
46 jx %= v.degree();
50 if(v.degree()) {
64 if(vertices[i].degree() != 0) vertices[ix++] = vertices[i];
68 for(unsigned j = 0; j < vertices[i].degree();
[all...]
H A Dpolynomial.cpp48 result.resize(degree() + p.degree()+1);
85 gsl_complex_packed_ptr z = new double[p.degree()*2];
90 //roots.resize(p.degree());
97 for (unsigned int i = 0; i < p.degree(); i++) {
188 const unsigned k = a.degree();
189 const unsigned l = b.degree();
H A Dbezier-utils.h48 Point bezier_pt(unsigned degree, Point const V[], double t);
H A Dbezier.cpp160 for(unsigned i = degree(); i < newDegree; i++) {
188 c_ += other.elevate_to_degree(degree()).c_;
190 *this = elevate_to_degree(other.degree());
201 c_ -= other.elevate_to_degree(degree()).c_;
203 *this = elevate_to_degree(other.degree());
H A Dforward.h75 template <unsigned degree> class BezierCurveN;
H A Dbezier-utils.cpp648 * \param degree The degree of the Bezier curve: 3 for cubic, 2 for quadratic etc. Must be less
650 * \param V The control points for the Bezier curve. Must have (\a degree+1)
666 bezier_pt(unsigned const degree, Point const V[], double const t)
673 assert( degree < 4);
681 for (unsigned i = 1; i < degree; ++i) {
686 Point ret = spow[degree] * V[0];
687 for (unsigned i = 1; i <= degree; ++i) {
688 ret += pascal[degree][i] * spow[degree
[all...]
H A Dpolynomial.h54 unsigned degree() const { return size()-1;} function in class:Geom::Poly
206 * find all p.degree() roots of p.
207 * This function can take a long time with suitably crafted polynomials, but in practice it should be fast. Should we provide special forms for degree() <= 4?
H A Dtoposweep.h103 inline unsigned degree() const { return enters.size() + exits.size(); } function in class:Geom::TopoGraph::Vertex
121 //returns a graph with all zero degree vertices and unused edges removed
H A Dsolve-bezier.cpp11 * function. This requires an O(degree^2) subdivision for each step, even when there is only one
132 if (bz.degree() == 1) {
H A Dbezier.h148 unsigned degree() const { return order(); } function in class:Geom::Bezier
/inkscape/src/2geom/numeric/
H A Dfitting-model.h154 LFMPowerBasis(size_t degree) argument
155 : m_size(degree + 1)
185 LFMPoly(size_t degree) argument
186 : LFMPowerBasis<Poly>(degree)
472 template <unsigned degree>
474 : public LinearFittingModel< double, Point, BezierCurveN<degree> >
478 : mob(degree+1)
492 void instance(BezierCurveN<degree> & bc, ConstMatrixView const& raw_data) const
494 Bezier bx(degree);
495 Bezier by(degree);
[all...]
/inkscape/src/libcola/
H A Dcola.cpp58 double degree = 0; local
65 degree+=lap2[i][j]=w>1e-30?1.f/(w*w):0;
67 lap2[i][i]=-degree;
124 double degree = 0; local
131 degree -= L_ij;
135 b[i] += degree * coords[i];

Completed in 1345 milliseconds