Searched defs:qy (Results 1 - 5 of 5) sorted by relevance

/illumos-gate/usr/src/lib/libmp/common/
H A Dmout.c33 short qten, qy; local
42 y.val = &qy;
61 qy = c - '0';
/illumos-gate/usr/src/common/crypto/ecc/
H A Dec2_aff.c80 const mp_int *qy, mp_int *rx, mp_int *ry,
95 MP_CHECKOK(mp_copy(qy, ry));
100 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
106 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
109 MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
123 /* if py != qy or qx = 0, then R = inf */
124 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
130 /* lambda = qx + qy / qx */
131 MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
141 /* ry = (qx + tempx) * lambda + tempx + qy */
79 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
161 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
196 mp_int k, k3, qx, qy, sx, sy; local
[all...]
H A Decp_aff.c86 const mp_int *qy, mp_int *rx, mp_int *ry,
103 MP_CHECKOK(mp_copy(qy, ry));
108 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
114 /* if px != qx, then lambda = (py-qy) / (px-qx) */
116 MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
121 /* if py != qy or qy = 0, then R = inf */
122 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
128 /* lambda = (3qx^2+a) / (2qy) */
85 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
171 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
209 mp_int k, k3, qx, qy, sx, sy; local
[all...]
H A Decp_jm.c129 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
136 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
156 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
163 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
171 /* A = qx * pz^2, B = qy * pz^3 */
175 MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
134 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *paz4, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, mp_int *raz4, mp_int scratch[], const ECGroup *group) argument
H A Decp_jac.c146 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
154 const mp_int *qx, const mp_int *qy, mp_int *rx,
176 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
179 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
186 /* A = qx * pz^2, B = qy * pz^3 */
190 MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
153 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) argument

Completed in 144 milliseconds