/illumos-gate/usr/src/lib/libmp/common/ |
H A D | mout.c | 33 short qten, qy; local 42 y.val = &qy; 61 qy = c - '0';
|
/illumos-gate/usr/src/common/crypto/ecc/ |
H A D | ec2_aff.c | 80 const mp_int *qy, mp_int *rx, mp_int *ry, 95 MP_CHECKOK(mp_copy(qy, ry)); 100 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) { 106 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2 109 MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth)); 123 /* if py != qy or qx = 0, then R = inf */ 124 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) { 130 /* lambda = qx + qy / qx */ 131 MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth)); 141 /* ry = (qx + tempx) * lambda + tempx + qy */ 79 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 161 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 196 mp_int k, k3, qx, qy, sx, sy; local [all...] |
H A D | ecp_aff.c | 86 const mp_int *qy, mp_int *rx, mp_int *ry, 103 MP_CHECKOK(mp_copy(qy, ry)); 108 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) { 114 /* if px != qx, then lambda = (py-qy) / (px-qx) */ 116 MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth)); 121 /* if py != qy or qy = 0, then R = inf */ 122 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) { 128 /* lambda = (3qx^2+a) / (2qy) */ 85 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 171 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 209 mp_int k, k3, qx, qy, sx, sy; local [all...] |
H A D | ecp_jm.c | 129 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. 136 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, 156 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); 163 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { 171 /* A = qx * pz^2, B = qy * pz^3 */ 175 MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth)); 134 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *paz4, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, mp_int *raz4, mp_int scratch[], const ECGroup *group) argument
|
H A D | ecp_jac.c | 146 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. 154 const mp_int *qx, const mp_int *qy, mp_int *rx, 176 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); 179 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { 186 /* A = qx * pz^2, B = qy * pz^3 */ 190 MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth)); 153 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) argument
|