Searched defs:qx (Results 1 - 5 of 5) sorted by relevance

/osnet-11/usr/src/lib/libmp/common/
H A Dmdiv.c60 m_dsb(int qx, int n, short *a, short *b) argument
68 (void) printf("m_dsb %d %d %d %d\n", qx, n, *a, *b);
76 (void) printf("1 borrow=%x %d %d %d\n", borrow, (*aptr * qx),
79 borrow -= (*aptr++) * qx - *bptr;
81 (void) printf("2 borrow=%x %d %d %d\n", borrow, (*aptr * qx),
86 (void) printf("3 borrow=%x %d %d %d\n", borrow, (*aptr * qx),
92 (void) printf("4 borrow=%x %d %d %d\n", borrow, (*aptr * qx),
/osnet-11/usr/src/common/crypto/ecc/
H A Dec2_aff.c79 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, argument
94 MP_CHECKOK(mp_copy(qx, rx));
100 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
106 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
107 * + lambda + px + qx */
108 if (mp_cmp(px, qx) != 0) {
110 MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
121 field_add(&tempx, qx, &tempx, group->meth));
123 /* if py != qy or qx
161 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
196 mp_int k, k3, qx, qy, sx, sy; local
[all...]
H A Decp_aff.c85 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, argument
102 MP_CHECKOK(mp_copy(qx, rx));
108 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
114 /* if px != qx, then lambda = (py-qy) / (px-qx) */
115 if (mp_cmp(px, qx) != 0) {
117 MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
128 /* lambda = (3qx^2+a) / (2qy) */
129 MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
146 /* rx = lambda^2 - px - qx */
171 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument
209 mp_int k, k3, qx, qy, sx, sy; local
[all...]
H A Decp_jm.c129 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
135 const mp_int *paz4, const mp_int *qx,
156 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
163 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
171 /* A = qx * pz^2, B = qy * pz^3 */
174 MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
134 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *paz4, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, mp_int *raz4, mp_int scratch[], const ECGroup *group) argument
H A Decp_jac.c146 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
154 const mp_int *qx, const mp_int *qy, mp_int *rx,
176 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
179 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
186 /* A = qx * pz^2, B = qy * pz^3 */
189 MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
153 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) argument

Completed in 34 milliseconds