/osnet-11/usr/src/lib/libmp/common/ |
H A D | mdiv.c | 60 m_dsb(int qx, int n, short *a, short *b) argument 68 (void) printf("m_dsb %d %d %d %d\n", qx, n, *a, *b); 76 (void) printf("1 borrow=%x %d %d %d\n", borrow, (*aptr * qx), 79 borrow -= (*aptr++) * qx - *bptr; 81 (void) printf("2 borrow=%x %d %d %d\n", borrow, (*aptr * qx), 86 (void) printf("3 borrow=%x %d %d %d\n", borrow, (*aptr * qx), 92 (void) printf("4 borrow=%x %d %d %d\n", borrow, (*aptr * qx),
|
/osnet-11/usr/src/common/crypto/ecc/ |
H A D | ec2_aff.c | 79 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, argument 94 MP_CHECKOK(mp_copy(qx, rx)); 100 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) { 106 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2 107 * + lambda + px + qx */ 108 if (mp_cmp(px, qx) != 0) { 110 MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth)); 121 field_add(&tempx, qx, &tempx, group->meth)); 123 /* if py != qy or qx 161 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 196 mp_int k, k3, qx, qy, sx, sy; local [all...] |
H A D | ecp_aff.c | 85 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, argument 102 MP_CHECKOK(mp_copy(qx, rx)); 108 if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) { 114 /* if px != qx, then lambda = (py-qy) / (px-qx) */ 115 if (mp_cmp(px, qx) != 0) { 117 MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth)); 128 /* lambda = (3qx^2+a) / (2qy) */ 129 MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth)); 146 /* rx = lambda^2 - px - qx */ 171 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) argument 209 mp_int k, k3, qx, qy, sx, sy; local [all...] |
H A D | ecp_jm.c | 129 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. 135 const mp_int *paz4, const mp_int *qx, 156 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); 163 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { 171 /* A = qx * pz^2, B = qy * pz^3 */ 174 MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth)); 134 ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *paz4, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, mp_int *raz4, mp_int scratch[], const ECGroup *group) argument
|
H A D | ecp_jac.c | 146 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. 154 const mp_int *qx, const mp_int *qy, mp_int *rx, 176 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); 179 if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { 186 /* A = qx * pz^2, B = qy * pz^3 */ 189 MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth)); 153 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) argument
|