Searched defs:P1 (Results 1 - 5 of 5) sorted by relevance
/inkscape/src/2geom/ |
H A D | conic_section_clipper_impl.cpp | 217 bool CLIPPER_CLASS::are_paired (Point& M, const Point & P1, const Point & P2) const argument 226 Point dir = P2 - P1; 227 DBGPRINT ("CLIP: are_paired: first point: ", P1) 255 // on the same side wrt the line passing through P1 and P2, but 257 double side0 = signed_triangle_area (P1, extrema[0], P2); 258 double side1 = signed_triangle_area (P1, extrema[1], P2); 277 // that follows such an ordering wrt P1 and P2; 279 double P1angle = cs.angle_at (P1);
|
H A D | bezier-clipping.cpp | 128 * Compute the determinant of the 2x2 matrix with column the point P1, P2 130 double det(Point const& P1, Point const& P2) argument 132 return P1[X]*P2[Y] - P1[Y]*P2[X]; 136 * Solve the linear system [P1,P2] * P = Q 139 bool solve(Point & P, Point const& P1, Point const& P2, Point const& Q) argument 141 double d = det(P1, P2); 145 P[Y] = det(P1, Q) * d;
|
H A D | conicsec.cpp | 124 Point P1 = Line0.pointAt((*oc).ta); 125 double triarea = boxprod(P0, P1, P2); 131 double tau0 = boxprod(P, P1, P2)/triarea; 133 double tau2 = boxprod(P0, P1, P)/triarea; 143 return RatQuad(P0, P1, P2, w); 150 RatQuad RatQuad::circularArc(Point P0, Point P1, Point P2) { argument 151 return RatQuad(P0, P1, P2, dot(unit_vector(P0 - P1), unit_vector(P0 - P2))); 1332 * P1: the initial point of the arc 1338 Rect xAx::arc_bound (const Point & P1, cons argument [all...] |
/inkscape/src/extension/internal/ |
H A D | emf-print.cpp | 803 Geom::Point P1; local 818 P1 = cit->initialPoint(); 825 if(Geom::are_near(P1_lead, P1, 1e-5))continue; // duplicate points at the same coordinate 826 v1 = unit_vector(P1 - P1_trail); 827 v2 = unit_vector(P1_lead - P1 ); 828 if(Geom::are_near(dot(v1,v2), 1.0, 1e-5)){ // P1 is within a straight line 829 P1 = P1_lead; 832 // P1 is the center point of a turn of some angle 834 output.start( P1 ); 837 if(!Geom::are_near(P1, P1_trai 861 Geom::Point P1; local 963 Geom::Point P1; local [all...] |
/inkscape/src/libuemf/ |
H A D | upmf.c | 861 \param Points Bezier points. Optional starting point, then N sets of 3, example: [P1] (Q12A Q12B P2) (Q23A Q23B P3). 866 If Start is set Elements must be 1 + multiple of 3. Ie, P1 Q12A Q12B P2 Q23A Q23B P3 868 If Start is clear Elements must be a multiple of 3. Ie, (P1, already in path) Q12A Q12B P2 Q23A Q23B P3 977 U_PMF_POINTF P1,P2; local 1016 P1 = U_eparam(a, b, &Center, Ang1, Theta); /* P1 */ 1018 Bz[0] = U_qparam(Alpha, a, b, &P1, Ang1, Theta, 1); /* Q1 */ 1022 if(StartSeg){ U_PATH_moveto(Path, P1, Flags); } 1023 else { U_PATH_lineto(Path, P1, Flags); }
|
Completed in 61 milliseconds