/*
* Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.tree;
import com.sun.source.tree.Tree;
import com.sun.tools.javac.comp.AttrContext;
import com.sun.tools.javac.comp.Env;
import java.util.Map;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.tree.JCTree.*;
import static com.sun.tools.javac.code.Flags.*;
/** Utility class containing inspector methods for trees.
*
*
This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.
*/
public class TreeInfo {
protected static final Context.Key treeInfoKey =
new Context.Key();
public static TreeInfo instance(Context context) {
TreeInfo instance = context.get(treeInfoKey);
if (instance == null)
instance = new TreeInfo(context);
return instance;
}
/** The names of all operators.
*/
private Name[] opname = new Name[JCTree.MOD - JCTree.POS + 1];
private TreeInfo(Context context) {
context.put(treeInfoKey, this);
Names names = Names.instance(context);
opname[JCTree.POS - JCTree.POS] = names.fromString("+");
opname[JCTree.NEG - JCTree.POS] = names.hyphen;
opname[JCTree.NOT - JCTree.POS] = names.fromString("!");
opname[JCTree.COMPL - JCTree.POS] = names.fromString("~");
opname[JCTree.PREINC - JCTree.POS] = names.fromString("++");
opname[JCTree.PREDEC - JCTree.POS] = names.fromString("--");
opname[JCTree.POSTINC - JCTree.POS] = names.fromString("++");
opname[JCTree.POSTDEC - JCTree.POS] = names.fromString("--");
opname[JCTree.NULLCHK - JCTree.POS] = names.fromString("<*nullchk*>");
opname[JCTree.OR - JCTree.POS] = names.fromString("||");
opname[JCTree.AND - JCTree.POS] = names.fromString("&&");
opname[JCTree.EQ - JCTree.POS] = names.fromString("==");
opname[JCTree.NE - JCTree.POS] = names.fromString("!=");
opname[JCTree.LT - JCTree.POS] = names.fromString("<");
opname[JCTree.GT - JCTree.POS] = names.fromString(">");
opname[JCTree.LE - JCTree.POS] = names.fromString("<=");
opname[JCTree.GE - JCTree.POS] = names.fromString(">=");
opname[JCTree.BITOR - JCTree.POS] = names.fromString("|");
opname[JCTree.BITXOR - JCTree.POS] = names.fromString("^");
opname[JCTree.BITAND - JCTree.POS] = names.fromString("&");
opname[JCTree.SL - JCTree.POS] = names.fromString("<<");
opname[JCTree.SR - JCTree.POS] = names.fromString(">>");
opname[JCTree.USR - JCTree.POS] = names.fromString(">>>");
opname[JCTree.PLUS - JCTree.POS] = names.fromString("+");
opname[JCTree.MINUS - JCTree.POS] = names.hyphen;
opname[JCTree.MUL - JCTree.POS] = names.asterisk;
opname[JCTree.DIV - JCTree.POS] = names.slash;
opname[JCTree.MOD - JCTree.POS] = names.fromString("%");
}
/** Return name of operator with given tree tag.
*/
public Name operatorName(int tag) {
return opname[tag - JCTree.POS];
}
/** Is tree a constructor declaration?
*/
public static boolean isConstructor(JCTree tree) {
if (tree.getTag() == JCTree.METHODDEF) {
Name name = ((JCMethodDecl) tree).name;
return name == name.table.names.init;
} else {
return false;
}
}
/** Is there a constructor declaration in the given list of trees?
*/
public static boolean hasConstructors(List trees) {
for (List l = trees; l.nonEmpty(); l = l.tail)
if (isConstructor(l.head)) return true;
return false;
}
public static boolean isMultiCatch(JCCatch catchClause) {
return catchClause.param.vartype.getTag() == JCTree.TYPEUNION;
}
/** Is statement an initializer for a synthetic field?
*/
public static boolean isSyntheticInit(JCTree stat) {
if (stat.getTag() == JCTree.EXEC) {
JCExpressionStatement exec = (JCExpressionStatement)stat;
if (exec.expr.getTag() == JCTree.ASSIGN) {
JCAssign assign = (JCAssign)exec.expr;
if (assign.lhs.getTag() == JCTree.SELECT) {
JCFieldAccess select = (JCFieldAccess)assign.lhs;
if (select.sym != null &&
(select.sym.flags() & SYNTHETIC) != 0) {
Name selected = name(select.selected);
if (selected != null && selected == selected.table.names._this)
return true;
}
}
}
}
return false;
}
/** If the expression is a method call, return the method name, null
* otherwise. */
public static Name calledMethodName(JCTree tree) {
if (tree.getTag() == JCTree.EXEC) {
JCExpressionStatement exec = (JCExpressionStatement)tree;
if (exec.expr.getTag() == JCTree.APPLY) {
Name mname = TreeInfo.name(((JCMethodInvocation) exec.expr).meth);
return mname;
}
}
return null;
}
/** Is this a call to this or super?
*/
public static boolean isSelfCall(JCTree tree) {
Name name = calledMethodName(tree);
if (name != null) {
Names names = name.table.names;
return name==names._this || name==names._super;
} else {
return false;
}
}
/** Is this a call to super?
*/
public static boolean isSuperCall(JCTree tree) {
Name name = calledMethodName(tree);
if (name != null) {
Names names = name.table.names;
return name==names._super;
} else {
return false;
}
}
/** Is this a constructor whose first (non-synthetic) statement is not
* of the form this(...)?
*/
public static boolean isInitialConstructor(JCTree tree) {
JCMethodInvocation app = firstConstructorCall(tree);
if (app == null) return false;
Name meth = name(app.meth);
return meth == null || meth != meth.table.names._this;
}
/** Return the first call in a constructor definition. */
public static JCMethodInvocation firstConstructorCall(JCTree tree) {
if (tree.getTag() != JCTree.METHODDEF) return null;
JCMethodDecl md = (JCMethodDecl) tree;
Names names = md.name.table.names;
if (md.name != names.init) return null;
if (md.body == null) return null;
List stats = md.body.stats;
// Synthetic initializations can appear before the super call.
while (stats.nonEmpty() && isSyntheticInit(stats.head))
stats = stats.tail;
if (stats.isEmpty()) return null;
if (stats.head.getTag() != JCTree.EXEC) return null;
JCExpressionStatement exec = (JCExpressionStatement) stats.head;
if (exec.expr.getTag() != JCTree.APPLY) return null;
return (JCMethodInvocation)exec.expr;
}
/** Return true if a tree represents a diamond new expr. */
public static boolean isDiamond(JCTree tree) {
switch(tree.getTag()) {
case JCTree.TYPEAPPLY: return ((JCTypeApply)tree).getTypeArguments().isEmpty();
case JCTree.NEWCLASS: return isDiamond(((JCNewClass)tree).clazz);
default: return false;
}
}
public static boolean isEnumInit(JCTree tree) {
switch (tree.getTag()) {
case JCTree.VARDEF:
return (((JCVariableDecl)tree).mods.flags & ENUM) != 0;
default:
return false;
}
}
/** Return true if a tree represents the null literal. */
public static boolean isNull(JCTree tree) {
if (tree.getTag() != JCTree.LITERAL)
return false;
JCLiteral lit = (JCLiteral) tree;
return (lit.typetag == TypeTags.BOT);
}
/** The position of the first statement in a block, or the position of
* the block itself if it is empty.
*/
public static int firstStatPos(JCTree tree) {
if (tree.getTag() == JCTree.BLOCK && ((JCBlock) tree).stats.nonEmpty())
return ((JCBlock) tree).stats.head.pos;
else
return tree.pos;
}
/** The end position of given tree, if it is a block with
* defined endpos.
*/
public static int endPos(JCTree tree) {
if (tree.getTag() == JCTree.BLOCK && ((JCBlock) tree).endpos != Position.NOPOS)
return ((JCBlock) tree).endpos;
else if (tree.getTag() == JCTree.SYNCHRONIZED)
return endPos(((JCSynchronized) tree).body);
else if (tree.getTag() == JCTree.TRY) {
JCTry t = (JCTry) tree;
return endPos((t.finalizer != null)
? t.finalizer
: (t.catchers.isEmpty()? t.body : t.catchers.last().body));
} else
return tree.pos;
}
/** Get the start position for a tree node. The start position is
* defined to be the position of the first character of the first
* token of the node's source text.
* @param tree The tree node
*/
public static int getStartPos(JCTree tree) {
if (tree == null)
return Position.NOPOS;
switch(tree.getTag()) {
case(JCTree.APPLY):
return getStartPos(((JCMethodInvocation) tree).meth);
case(JCTree.ASSIGN):
return getStartPos(((JCAssign) tree).lhs);
case(JCTree.BITOR_ASG): case(JCTree.BITXOR_ASG): case(JCTree.BITAND_ASG):
case(JCTree.SL_ASG): case(JCTree.SR_ASG): case(JCTree.USR_ASG):
case(JCTree.PLUS_ASG): case(JCTree.MINUS_ASG): case(JCTree.MUL_ASG):
case(JCTree.DIV_ASG): case(JCTree.MOD_ASG):
return getStartPos(((JCAssignOp) tree).lhs);
case(JCTree.OR): case(JCTree.AND): case(JCTree.BITOR):
case(JCTree.BITXOR): case(JCTree.BITAND): case(JCTree.EQ):
case(JCTree.NE): case(JCTree.LT): case(JCTree.GT):
case(JCTree.LE): case(JCTree.GE): case(JCTree.SL):
case(JCTree.SR): case(JCTree.USR): case(JCTree.PLUS):
case(JCTree.MINUS): case(JCTree.MUL): case(JCTree.DIV):
case(JCTree.MOD):
return getStartPos(((JCBinary) tree).lhs);
case(JCTree.CLASSDEF): {
JCClassDecl node = (JCClassDecl)tree;
if (node.mods.pos != Position.NOPOS)
return node.mods.pos;
break;
}
case(JCTree.CONDEXPR):
return getStartPos(((JCConditional) tree).cond);
case(JCTree.EXEC):
return getStartPos(((JCExpressionStatement) tree).expr);
case(JCTree.INDEXED):
return getStartPos(((JCArrayAccess) tree).indexed);
case(JCTree.METHODDEF): {
JCMethodDecl node = (JCMethodDecl)tree;
if (node.mods.pos != Position.NOPOS)
return node.mods.pos;
if (node.typarams.nonEmpty()) // List.nil() used for no typarams
return getStartPos(node.typarams.head);
return node.restype == null ? node.pos : getStartPos(node.restype);
}
case(JCTree.SELECT):
return getStartPos(((JCFieldAccess) tree).selected);
case(JCTree.TYPEAPPLY):
return getStartPos(((JCTypeApply) tree).clazz);
case(JCTree.TYPEARRAY):
return getStartPos(((JCArrayTypeTree) tree).elemtype);
case(JCTree.TYPETEST):
return getStartPos(((JCInstanceOf) tree).expr);
case(JCTree.POSTINC):
case(JCTree.POSTDEC):
return getStartPos(((JCUnary) tree).arg);
case(JCTree.NEWCLASS): {
JCNewClass node = (JCNewClass)tree;
if (node.encl != null)
return getStartPos(node.encl);
break;
}
case(JCTree.VARDEF): {
JCVariableDecl node = (JCVariableDecl)tree;
if (node.mods.pos != Position.NOPOS) {
return node.mods.pos;
} else {
return getStartPos(node.vartype);
}
}
case(JCTree.ERRONEOUS): {
JCErroneous node = (JCErroneous)tree;
if (node.errs != null && node.errs.nonEmpty())
return getStartPos(node.errs.head);
}
}
return tree.pos;
}
/** The end position of given tree, given a table of end positions generated by the parser
*/
public static int getEndPos(JCTree tree, Map endPositions) {
if (tree == null)
return Position.NOPOS;
if (endPositions == null) {
// fall back on limited info in the tree
return endPos(tree);
}
Integer mapPos = endPositions.get(tree);
if (mapPos != null)
return mapPos;
switch(tree.getTag()) {
case(JCTree.BITOR_ASG): case(JCTree.BITXOR_ASG): case(JCTree.BITAND_ASG):
case(JCTree.SL_ASG): case(JCTree.SR_ASG): case(JCTree.USR_ASG):
case(JCTree.PLUS_ASG): case(JCTree.MINUS_ASG): case(JCTree.MUL_ASG):
case(JCTree.DIV_ASG): case(JCTree.MOD_ASG):
return getEndPos(((JCAssignOp) tree).rhs, endPositions);
case(JCTree.OR): case(JCTree.AND): case(JCTree.BITOR):
case(JCTree.BITXOR): case(JCTree.BITAND): case(JCTree.EQ):
case(JCTree.NE): case(JCTree.LT): case(JCTree.GT):
case(JCTree.LE): case(JCTree.GE): case(JCTree.SL):
case(JCTree.SR): case(JCTree.USR): case(JCTree.PLUS):
case(JCTree.MINUS): case(JCTree.MUL): case(JCTree.DIV):
case(JCTree.MOD):
return getEndPos(((JCBinary) tree).rhs, endPositions);
case(JCTree.CASE):
return getEndPos(((JCCase) tree).stats.last(), endPositions);
case(JCTree.CATCH):
return getEndPos(((JCCatch) tree).body, endPositions);
case(JCTree.CONDEXPR):
return getEndPos(((JCConditional) tree).falsepart, endPositions);
case(JCTree.FORLOOP):
return getEndPos(((JCForLoop) tree).body, endPositions);
case(JCTree.FOREACHLOOP):
return getEndPos(((JCEnhancedForLoop) tree).body, endPositions);
case(JCTree.IF): {
JCIf node = (JCIf)tree;
if (node.elsepart == null) {
return getEndPos(node.thenpart, endPositions);
} else {
return getEndPos(node.elsepart, endPositions);
}
}
case(JCTree.LABELLED):
return getEndPos(((JCLabeledStatement) tree).body, endPositions);
case(JCTree.MODIFIERS):
return getEndPos(((JCModifiers) tree).annotations.last(), endPositions);
case(JCTree.SYNCHRONIZED):
return getEndPos(((JCSynchronized) tree).body, endPositions);
case(JCTree.TOPLEVEL):
return getEndPos(((JCCompilationUnit) tree).defs.last(), endPositions);
case(JCTree.TRY): {
JCTry node = (JCTry)tree;
if (node.finalizer != null) {
return getEndPos(node.finalizer, endPositions);
} else if (!node.catchers.isEmpty()) {
return getEndPos(node.catchers.last(), endPositions);
} else {
return getEndPos(node.body, endPositions);
}
}
case(JCTree.WILDCARD):
return getEndPos(((JCWildcard) tree).inner, endPositions);
case(JCTree.TYPECAST):
return getEndPos(((JCTypeCast) tree).expr, endPositions);
case(JCTree.TYPETEST):
return getEndPos(((JCInstanceOf) tree).clazz, endPositions);
case(JCTree.POS):
case(JCTree.NEG):
case(JCTree.NOT):
case(JCTree.COMPL):
case(JCTree.PREINC):
case(JCTree.PREDEC):
return getEndPos(((JCUnary) tree).arg, endPositions);
case(JCTree.WHILELOOP):
return getEndPos(((JCWhileLoop) tree).body, endPositions);
case(JCTree.ERRONEOUS): {
JCErroneous node = (JCErroneous)tree;
if (node.errs != null && node.errs.nonEmpty())
return getEndPos(node.errs.last(), endPositions);
}
}
return Position.NOPOS;
}
/** A DiagnosticPosition with the preferred position set to the
* end position of given tree, if it is a block with
* defined endpos.
*/
public static DiagnosticPosition diagEndPos(final JCTree tree) {
final int endPos = TreeInfo.endPos(tree);
return new DiagnosticPosition() {
public JCTree getTree() { return tree; }
public int getStartPosition() { return TreeInfo.getStartPos(tree); }
public int getPreferredPosition() { return endPos; }
public int getEndPosition(Map endPosTable) {
return TreeInfo.getEndPos(tree, endPosTable);
}
};
}
/** The position of the finalizer of given try/synchronized statement.
*/
public static int finalizerPos(JCTree tree) {
if (tree.getTag() == JCTree.TRY) {
JCTry t = (JCTry) tree;
Assert.checkNonNull(t.finalizer);
return firstStatPos(t.finalizer);
} else if (tree.getTag() == JCTree.SYNCHRONIZED) {
return endPos(((JCSynchronized) tree).body);
} else {
throw new AssertionError();
}
}
/** Find the position for reporting an error about a symbol, where
* that symbol is defined somewhere in the given tree. */
public static int positionFor(final Symbol sym, final JCTree tree) {
JCTree decl = declarationFor(sym, tree);
return ((decl != null) ? decl : tree).pos;
}
/** Find the position for reporting an error about a symbol, where
* that symbol is defined somewhere in the given tree. */
public static DiagnosticPosition diagnosticPositionFor(final Symbol sym, final JCTree tree) {
JCTree decl = declarationFor(sym, tree);
return ((decl != null) ? decl : tree).pos();
}
/** Find the declaration for a symbol, where
* that symbol is defined somewhere in the given tree. */
public static JCTree declarationFor(final Symbol sym, final JCTree tree) {
class DeclScanner extends TreeScanner {
JCTree result = null;
public void scan(JCTree tree) {
if (tree!=null && result==null)
tree.accept(this);
}
public void visitTopLevel(JCCompilationUnit that) {
if (that.packge == sym) result = that;
else super.visitTopLevel(that);
}
public void visitClassDef(JCClassDecl that) {
if (that.sym == sym) result = that;
else super.visitClassDef(that);
}
public void visitMethodDef(JCMethodDecl that) {
if (that.sym == sym) result = that;
else super.visitMethodDef(that);
}
public void visitVarDef(JCVariableDecl that) {
if (that.sym == sym) result = that;
else super.visitVarDef(that);
}
public void visitTypeParameter(JCTypeParameter that) {
if (that.type != null && that.type.tsym == sym) result = that;
else super.visitTypeParameter(that);
}
}
DeclScanner s = new DeclScanner();
tree.accept(s);
return s.result;
}
public static Env scopeFor(JCTree node, JCCompilationUnit unit) {
return scopeFor(pathFor(node, unit));
}
public static Env scopeFor(List path) {
// TODO: not implemented yet
throw new UnsupportedOperationException("not implemented yet");
}
public static List pathFor(final JCTree node, final JCCompilationUnit unit) {
class Result extends Error {
static final long serialVersionUID = -5942088234594905625L;
List path;
Result(List path) {
this.path = path;
}
}
class PathFinder extends TreeScanner {
List path = List.nil();
public void scan(JCTree tree) {
if (tree != null) {
path = path.prepend(tree);
if (tree == node)
throw new Result(path);
super.scan(tree);
path = path.tail;
}
}
}
try {
new PathFinder().scan(unit);
} catch (Result result) {
return result.path;
}
return List.nil();
}
/** Return the statement referenced by a label.
* If the label refers to a loop or switch, return that switch
* otherwise return the labelled statement itself
*/
public static JCTree referencedStatement(JCLabeledStatement tree) {
JCTree t = tree;
do t = ((JCLabeledStatement) t).body;
while (t.getTag() == JCTree.LABELLED);
switch (t.getTag()) {
case JCTree.DOLOOP: case JCTree.WHILELOOP: case JCTree.FORLOOP: case JCTree.FOREACHLOOP: case JCTree.SWITCH:
return t;
default:
return tree;
}
}
/** Skip parens and return the enclosed expression
*/
public static JCExpression skipParens(JCExpression tree) {
while (tree.getTag() == JCTree.PARENS) {
tree = ((JCParens) tree).expr;
}
return tree;
}
/** Skip parens and return the enclosed expression
*/
public static JCTree skipParens(JCTree tree) {
if (tree.getTag() == JCTree.PARENS)
return skipParens((JCParens)tree);
else
return tree;
}
/** Return the types of a list of trees.
*/
public static List types(List extends JCTree> trees) {
ListBuffer ts = new ListBuffer();
for (List extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
ts.append(l.head.type);
return ts.toList();
}
/** If this tree is an identifier or a field or a parameterized type,
* return its name, otherwise return null.
*/
public static Name name(JCTree tree) {
switch (tree.getTag()) {
case JCTree.IDENT:
return ((JCIdent) tree).name;
case JCTree.SELECT:
return ((JCFieldAccess) tree).name;
case JCTree.TYPEAPPLY:
return name(((JCTypeApply) tree).clazz);
default:
return null;
}
}
/** If this tree is a qualified identifier, its return fully qualified name,
* otherwise return null.
*/
public static Name fullName(JCTree tree) {
tree = skipParens(tree);
switch (tree.getTag()) {
case JCTree.IDENT:
return ((JCIdent) tree).name;
case JCTree.SELECT:
Name sname = fullName(((JCFieldAccess) tree).selected);
return sname == null ? null : sname.append('.', name(tree));
default:
return null;
}
}
public static Symbol symbolFor(JCTree node) {
node = skipParens(node);
switch (node.getTag()) {
case JCTree.CLASSDEF:
return ((JCClassDecl) node).sym;
case JCTree.METHODDEF:
return ((JCMethodDecl) node).sym;
case JCTree.VARDEF:
return ((JCVariableDecl) node).sym;
default:
return null;
}
}
public static boolean isDeclaration(JCTree node) {
node = skipParens(node);
switch (node.getTag()) {
case JCTree.CLASSDEF:
case JCTree.METHODDEF:
case JCTree.VARDEF:
return true;
default:
return false;
}
}
/** If this tree is an identifier or a field, return its symbol,
* otherwise return null.
*/
public static Symbol symbol(JCTree tree) {
tree = skipParens(tree);
switch (tree.getTag()) {
case JCTree.IDENT:
return ((JCIdent) tree).sym;
case JCTree.SELECT:
return ((JCFieldAccess) tree).sym;
case JCTree.TYPEAPPLY:
return symbol(((JCTypeApply) tree).clazz);
default:
return null;
}
}
/** Return true if this is a nonstatic selection. */
public static boolean nonstaticSelect(JCTree tree) {
tree = skipParens(tree);
if (tree.getTag() != JCTree.SELECT) return false;
JCFieldAccess s = (JCFieldAccess) tree;
Symbol e = symbol(s.selected);
return e == null || (e.kind != Kinds.PCK && e.kind != Kinds.TYP);
}
/** If this tree is an identifier or a field, set its symbol, otherwise skip.
*/
public static void setSymbol(JCTree tree, Symbol sym) {
tree = skipParens(tree);
switch (tree.getTag()) {
case JCTree.IDENT:
((JCIdent) tree).sym = sym; break;
case JCTree.SELECT:
((JCFieldAccess) tree).sym = sym; break;
default:
}
}
/** If this tree is a declaration or a block, return its flags field,
* otherwise return 0.
*/
public static long flags(JCTree tree) {
switch (tree.getTag()) {
case JCTree.VARDEF:
return ((JCVariableDecl) tree).mods.flags;
case JCTree.METHODDEF:
return ((JCMethodDecl) tree).mods.flags;
case JCTree.CLASSDEF:
return ((JCClassDecl) tree).mods.flags;
case JCTree.BLOCK:
return ((JCBlock) tree).flags;
default:
return 0;
}
}
/** Return first (smallest) flag in `flags':
* pre: flags != 0
*/
public static long firstFlag(long flags) {
int flag = 1;
while ((flag & StandardFlags) != 0 && (flag & flags) == 0)
flag = flag << 1;
return flag;
}
/** Return flags as a string, separated by " ".
*/
public static String flagNames(long flags) {
return Flags.toString(flags & StandardFlags).trim();
}
/** Operator precedences values.
*/
public static final int
notExpression = -1, // not an expression
noPrec = 0, // no enclosing expression
assignPrec = 1,
assignopPrec = 2,
condPrec = 3,
orPrec = 4,
andPrec = 5,
bitorPrec = 6,
bitxorPrec = 7,
bitandPrec = 8,
eqPrec = 9,
ordPrec = 10,
shiftPrec = 11,
addPrec = 12,
mulPrec = 13,
prefixPrec = 14,
postfixPrec = 15,
precCount = 16;
/** Map operators to their precedence levels.
*/
public static int opPrec(int op) {
switch(op) {
case JCTree.POS:
case JCTree.NEG:
case JCTree.NOT:
case JCTree.COMPL:
case JCTree.PREINC:
case JCTree.PREDEC: return prefixPrec;
case JCTree.POSTINC:
case JCTree.POSTDEC:
case JCTree.NULLCHK: return postfixPrec;
case JCTree.ASSIGN: return assignPrec;
case JCTree.BITOR_ASG:
case JCTree.BITXOR_ASG:
case JCTree.BITAND_ASG:
case JCTree.SL_ASG:
case JCTree.SR_ASG:
case JCTree.USR_ASG:
case JCTree.PLUS_ASG:
case JCTree.MINUS_ASG:
case JCTree.MUL_ASG:
case JCTree.DIV_ASG:
case JCTree.MOD_ASG: return assignopPrec;
case JCTree.OR: return orPrec;
case JCTree.AND: return andPrec;
case JCTree.EQ:
case JCTree.NE: return eqPrec;
case JCTree.LT:
case JCTree.GT:
case JCTree.LE:
case JCTree.GE: return ordPrec;
case JCTree.BITOR: return bitorPrec;
case JCTree.BITXOR: return bitxorPrec;
case JCTree.BITAND: return bitandPrec;
case JCTree.SL:
case JCTree.SR:
case JCTree.USR: return shiftPrec;
case JCTree.PLUS:
case JCTree.MINUS: return addPrec;
case JCTree.MUL:
case JCTree.DIV:
case JCTree.MOD: return mulPrec;
case JCTree.TYPETEST: return ordPrec;
default: throw new AssertionError();
}
}
static Tree.Kind tagToKind(int tag) {
switch (tag) {
// Postfix expressions
case JCTree.POSTINC: // _ ++
return Tree.Kind.POSTFIX_INCREMENT;
case JCTree.POSTDEC: // _ --
return Tree.Kind.POSTFIX_DECREMENT;
// Unary operators
case JCTree.PREINC: // ++ _
return Tree.Kind.PREFIX_INCREMENT;
case JCTree.PREDEC: // -- _
return Tree.Kind.PREFIX_DECREMENT;
case JCTree.POS: // +
return Tree.Kind.UNARY_PLUS;
case JCTree.NEG: // -
return Tree.Kind.UNARY_MINUS;
case JCTree.COMPL: // ~
return Tree.Kind.BITWISE_COMPLEMENT;
case JCTree.NOT: // !
return Tree.Kind.LOGICAL_COMPLEMENT;
// Binary operators
// Multiplicative operators
case JCTree.MUL: // *
return Tree.Kind.MULTIPLY;
case JCTree.DIV: // /
return Tree.Kind.DIVIDE;
case JCTree.MOD: // %
return Tree.Kind.REMAINDER;
// Additive operators
case JCTree.PLUS: // +
return Tree.Kind.PLUS;
case JCTree.MINUS: // -
return Tree.Kind.MINUS;
// Shift operators
case JCTree.SL: // <<
return Tree.Kind.LEFT_SHIFT;
case JCTree.SR: // >>
return Tree.Kind.RIGHT_SHIFT;
case JCTree.USR: // >>>
return Tree.Kind.UNSIGNED_RIGHT_SHIFT;
// Relational operators
case JCTree.LT: // <
return Tree.Kind.LESS_THAN;
case JCTree.GT: // >
return Tree.Kind.GREATER_THAN;
case JCTree.LE: // <=
return Tree.Kind.LESS_THAN_EQUAL;
case JCTree.GE: // >=
return Tree.Kind.GREATER_THAN_EQUAL;
// Equality operators
case JCTree.EQ: // ==
return Tree.Kind.EQUAL_TO;
case JCTree.NE: // !=
return Tree.Kind.NOT_EQUAL_TO;
// Bitwise and logical operators
case JCTree.BITAND: // &
return Tree.Kind.AND;
case JCTree.BITXOR: // ^
return Tree.Kind.XOR;
case JCTree.BITOR: // |
return Tree.Kind.OR;
// Conditional operators
case JCTree.AND: // &&
return Tree.Kind.CONDITIONAL_AND;
case JCTree.OR: // ||
return Tree.Kind.CONDITIONAL_OR;
// Assignment operators
case JCTree.MUL_ASG: // *=
return Tree.Kind.MULTIPLY_ASSIGNMENT;
case JCTree.DIV_ASG: // /=
return Tree.Kind.DIVIDE_ASSIGNMENT;
case JCTree.MOD_ASG: // %=
return Tree.Kind.REMAINDER_ASSIGNMENT;
case JCTree.PLUS_ASG: // +=
return Tree.Kind.PLUS_ASSIGNMENT;
case JCTree.MINUS_ASG: // -=
return Tree.Kind.MINUS_ASSIGNMENT;
case JCTree.SL_ASG: // <<=
return Tree.Kind.LEFT_SHIFT_ASSIGNMENT;
case JCTree.SR_ASG: // >>=
return Tree.Kind.RIGHT_SHIFT_ASSIGNMENT;
case JCTree.USR_ASG: // >>>=
return Tree.Kind.UNSIGNED_RIGHT_SHIFT_ASSIGNMENT;
case JCTree.BITAND_ASG: // &=
return Tree.Kind.AND_ASSIGNMENT;
case JCTree.BITXOR_ASG: // ^=
return Tree.Kind.XOR_ASSIGNMENT;
case JCTree.BITOR_ASG: // |=
return Tree.Kind.OR_ASSIGNMENT;
// Null check (implementation detail), for example, __.getClass()
case JCTree.NULLCHK:
return Tree.Kind.OTHER;
default:
return null;
}
}
/**
* Returns the underlying type of the tree if it is annotated type,
* or the tree itself otherwise
*/
public static JCExpression typeIn(JCExpression tree) {
switch (tree.getTag()) {
case JCTree.IDENT: /* simple names */
case JCTree.TYPEIDENT: /* primitive name */
case JCTree.SELECT: /* qualified name */
case JCTree.TYPEARRAY: /* array types */
case JCTree.WILDCARD: /* wild cards */
case JCTree.TYPEPARAMETER: /* type parameters */
case JCTree.TYPEAPPLY: /* parameterized types */
return tree;
default:
throw new AssertionError("Unexpected type tree: " + tree);
}
}
public static JCTree innermostType(JCTree type) {
switch (type.getTag()) {
case JCTree.TYPEARRAY:
return innermostType(((JCArrayTypeTree)type).elemtype);
case JCTree.WILDCARD:
return innermostType(((JCWildcard)type).inner);
default:
return type;
}
}
}