/* * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package javax.crypto; import java.security.*; import java.net.*; import java.util.*; import java.util.jar.*; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; /** * The JCE security manager. * *

The JCE security manager is responsible for determining the maximum * allowable cryptographic strength for a given applet/application, for a given * algorithm, by consulting the configured jurisdiction policy files and * the cryptographic permissions bundled with the applet/application. * *

Note that this security manager is never installed, only instantiated. * * @author Jan Luehe * * @since 1.4 */ final class JceSecurityManager extends SecurityManager { private static final CryptoPermissions defaultPolicy; private static final CryptoPermissions exemptPolicy; private static final CryptoAllPermission allPerm; private static final Vector TrustedCallersCache = new Vector(2); private static final ConcurrentMap exemptCache = new ConcurrentHashMap<>(); private static final CryptoPermissions CACHE_NULL_MARK = new CryptoPermissions(); // singleton instance static final JceSecurityManager INSTANCE; static { defaultPolicy = JceSecurity.getDefaultPolicy(); exemptPolicy = JceSecurity.getExemptPolicy(); allPerm = CryptoAllPermission.INSTANCE; INSTANCE = (JceSecurityManager) AccessController.doPrivileged(new PrivilegedAction() { public Object run() { return new JceSecurityManager(); } }); } private JceSecurityManager() { // empty } /** * Returns the maximum allowable crypto strength for the given * applet/application, for the given algorithm. */ CryptoPermission getCryptoPermission(String alg) { // Need to convert to uppercase since the crypto perm // lookup is case sensitive. alg = alg.toUpperCase(Locale.ENGLISH); // If CryptoAllPermission is granted by default, we return that. // Otherwise, this will be the permission we return if anything goes // wrong. CryptoPermission defaultPerm = getDefaultPermission(alg); if (defaultPerm == CryptoAllPermission.INSTANCE) { return defaultPerm; } // Determine the codebase of the caller of the JCE API. // This is the codebase of the first class which is not in // javax.crypto.* packages. // NOTE: javax.crypto.* package maybe subject to package // insertion, so need to check its classloader as well. Class[] context = getClassContext(); URL callerCodeBase = null; int i; for (i=0; i