/*
* Copyright (c) 2001, 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.security.spec;
import java.math.BigInteger;
/**
* This class specifies an RSA multi-prime private key, as defined in the
* PKCS#1 v2.1, using the Chinese Remainder Theorem (CRT) information
* values for efficiency.
*
* @author Valerie Peng
*
*
* @see java.security.Key
* @see java.security.KeyFactory
* @see KeySpec
* @see PKCS8EncodedKeySpec
* @see RSAPrivateKeySpec
* @see RSAPublicKeySpec
* @see RSAOtherPrimeInfo
*
* @since 1.4
*/
public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec {
private final BigInteger publicExponent;
private final BigInteger primeP;
private final BigInteger primeQ;
private final BigInteger primeExponentP;
private final BigInteger primeExponentQ;
private final BigInteger crtCoefficient;
private final RSAOtherPrimeInfo otherPrimeInfo[];
/**
* Creates a new RSAMultiPrimePrivateCrtKeySpec
* given the modulus, publicExponent, privateExponent,
* primeP, primeQ, primeExponentP, primeExponentQ,
* crtCoefficient, and otherPrimeInfo as defined in PKCS#1 v2.1.
*
*
Note that the contents of otherPrimeInfo
* are copied to protect against subsequent modification when
* constructing this object.
*
* @param modulus the modulus n.
* @param publicExponent the public exponent e.
* @param privateExponent the private exponent d.
* @param primeP the prime factor p of n.
* @param primeQ the prime factor q of n.
* @param primeExponentP this is d mod (p-1).
* @param primeExponentQ this is d mod (q-1).
* @param crtCoefficient the Chinese Remainder Theorem
* coefficient q-1 mod p.
* @param otherPrimeInfo triplets of the rest of primes, null can be
* specified if there are only two prime factors (p and q).
* @exception NullPointerException if any of the parameters, i.e.
* modulus
,
* publicExponent
, privateExponent
,
* primeP
, primeQ
,
* primeExponentP
, primeExponentQ
,
* crtCoefficient
, is null.
* @exception IllegalArgumentException if an empty, i.e. 0-length,
* otherPrimeInfo
is specified.
*/
public RSAMultiPrimePrivateCrtKeySpec(BigInteger modulus,
BigInteger publicExponent,
BigInteger privateExponent,
BigInteger primeP,
BigInteger primeQ,
BigInteger primeExponentP,
BigInteger primeExponentQ,
BigInteger crtCoefficient,
RSAOtherPrimeInfo[] otherPrimeInfo) {
super(modulus, privateExponent);
if (modulus == null) {
throw new NullPointerException("the modulus parameter must be " +
"non-null");
}
if (publicExponent == null) {
throw new NullPointerException("the publicExponent parameter " +
"must be non-null");
}
if (privateExponent == null) {
throw new NullPointerException("the privateExponent parameter " +
"must be non-null");
}
if (primeP == null) {
throw new NullPointerException("the primeP parameter " +
"must be non-null");
}
if (primeQ == null) {
throw new NullPointerException("the primeQ parameter " +
"must be non-null");
}
if (primeExponentP == null) {
throw new NullPointerException("the primeExponentP parameter " +
"must be non-null");
}
if (primeExponentQ == null) {
throw new NullPointerException("the primeExponentQ parameter " +
"must be non-null");
}
if (crtCoefficient == null) {
throw new NullPointerException("the crtCoefficient parameter " +
"must be non-null");
}
this.publicExponent = publicExponent;
this.primeP = primeP;
this.primeQ = primeQ;
this.primeExponentP = primeExponentP;
this.primeExponentQ = primeExponentQ;
this.crtCoefficient = crtCoefficient;
if (otherPrimeInfo == null) {
this.otherPrimeInfo = null;
} else if (otherPrimeInfo.length == 0) {
throw new IllegalArgumentException("the otherPrimeInfo " +
"parameter must not be empty");
} else {
this.otherPrimeInfo = otherPrimeInfo.clone();
}
}
/**
* Returns the public exponent.
*
* @return the public exponent.
*/
public BigInteger getPublicExponent() {
return this.publicExponent;
}
/**
* Returns the primeP.
*
* @return the primeP.
*/
public BigInteger getPrimeP() {
return this.primeP;
}
/**
* Returns the primeQ.
*
* @return the primeQ.
*/
public BigInteger getPrimeQ() {
return this.primeQ;
}
/**
* Returns the primeExponentP.
*
* @return the primeExponentP.
*/
public BigInteger getPrimeExponentP() {
return this.primeExponentP;
}
/**
* Returns the primeExponentQ.
*
* @return the primeExponentQ.
*/
public BigInteger getPrimeExponentQ() {
return this.primeExponentQ;
}
/**
* Returns the crtCoefficient.
*
* @return the crtCoefficient.
*/
public BigInteger getCrtCoefficient() {
return this.crtCoefficient;
}
/**
* Returns a copy of the otherPrimeInfo or null if there are
* only two prime factors (p and q).
*
* @return the otherPrimeInfo. Returns a new array each
* time this method is called.
*/
public RSAOtherPrimeInfo[] getOtherPrimeInfo() {
if (otherPrimeInfo == null) return null;
return otherPrimeInfo.clone();
}
}