/* * Copyright (c) 2001, 2003, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.security.spec; import java.math.BigInteger; /** * This class specifies an RSA multi-prime private key, as defined in the * PKCS#1 v2.1, using the Chinese Remainder Theorem (CRT) information * values for efficiency. * * @author Valerie Peng * * * @see java.security.Key * @see java.security.KeyFactory * @see KeySpec * @see PKCS8EncodedKeySpec * @see RSAPrivateKeySpec * @see RSAPublicKeySpec * @see RSAOtherPrimeInfo * * @since 1.4 */ public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec { private final BigInteger publicExponent; private final BigInteger primeP; private final BigInteger primeQ; private final BigInteger primeExponentP; private final BigInteger primeExponentQ; private final BigInteger crtCoefficient; private final RSAOtherPrimeInfo otherPrimeInfo[]; /** * Creates a new RSAMultiPrimePrivateCrtKeySpec * given the modulus, publicExponent, privateExponent, * primeP, primeQ, primeExponentP, primeExponentQ, * crtCoefficient, and otherPrimeInfo as defined in PKCS#1 v2.1. * *

Note that the contents of otherPrimeInfo * are copied to protect against subsequent modification when * constructing this object. * * @param modulus the modulus n. * @param publicExponent the public exponent e. * @param privateExponent the private exponent d. * @param primeP the prime factor p of n. * @param primeQ the prime factor q of n. * @param primeExponentP this is d mod (p-1). * @param primeExponentQ this is d mod (q-1). * @param crtCoefficient the Chinese Remainder Theorem * coefficient q-1 mod p. * @param otherPrimeInfo triplets of the rest of primes, null can be * specified if there are only two prime factors (p and q). * @exception NullPointerException if any of the parameters, i.e. * modulus, * publicExponent, privateExponent, * primeP, primeQ, * primeExponentP, primeExponentQ, * crtCoefficient, is null. * @exception IllegalArgumentException if an empty, i.e. 0-length, * otherPrimeInfo is specified. */ public RSAMultiPrimePrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient, RSAOtherPrimeInfo[] otherPrimeInfo) { super(modulus, privateExponent); if (modulus == null) { throw new NullPointerException("the modulus parameter must be " + "non-null"); } if (publicExponent == null) { throw new NullPointerException("the publicExponent parameter " + "must be non-null"); } if (privateExponent == null) { throw new NullPointerException("the privateExponent parameter " + "must be non-null"); } if (primeP == null) { throw new NullPointerException("the primeP parameter " + "must be non-null"); } if (primeQ == null) { throw new NullPointerException("the primeQ parameter " + "must be non-null"); } if (primeExponentP == null) { throw new NullPointerException("the primeExponentP parameter " + "must be non-null"); } if (primeExponentQ == null) { throw new NullPointerException("the primeExponentQ parameter " + "must be non-null"); } if (crtCoefficient == null) { throw new NullPointerException("the crtCoefficient parameter " + "must be non-null"); } this.publicExponent = publicExponent; this.primeP = primeP; this.primeQ = primeQ; this.primeExponentP = primeExponentP; this.primeExponentQ = primeExponentQ; this.crtCoefficient = crtCoefficient; if (otherPrimeInfo == null) { this.otherPrimeInfo = null; } else if (otherPrimeInfo.length == 0) { throw new IllegalArgumentException("the otherPrimeInfo " + "parameter must not be empty"); } else { this.otherPrimeInfo = otherPrimeInfo.clone(); } } /** * Returns the public exponent. * * @return the public exponent. */ public BigInteger getPublicExponent() { return this.publicExponent; } /** * Returns the primeP. * * @return the primeP. */ public BigInteger getPrimeP() { return this.primeP; } /** * Returns the primeQ. * * @return the primeQ. */ public BigInteger getPrimeQ() { return this.primeQ; } /** * Returns the primeExponentP. * * @return the primeExponentP. */ public BigInteger getPrimeExponentP() { return this.primeExponentP; } /** * Returns the primeExponentQ. * * @return the primeExponentQ. */ public BigInteger getPrimeExponentQ() { return this.primeExponentQ; } /** * Returns the crtCoefficient. * * @return the crtCoefficient. */ public BigInteger getCrtCoefficient() { return this.crtCoefficient; } /** * Returns a copy of the otherPrimeInfo or null if there are * only two prime factors (p and q). * * @return the otherPrimeInfo. Returns a new array each * time this method is called. */ public RSAOtherPrimeInfo[] getOtherPrimeInfo() { if (otherPrimeInfo == null) return null; return otherPrimeInfo.clone(); } }