/* * reserved comment block * DO NOT REMOVE OR ALTER! */ /* * Copyright 1999-2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.sun.org.apache.regexp.internal; import java.io.Serializable; import java.util.Vector; /** * RE is an efficient, lightweight regular expression evaluator/matcher * class. Regular expressions are pattern descriptions which enable * sophisticated matching of strings. In addition to being able to * match a string against a pattern, you can also extract parts of the * match. This is especially useful in text parsing! Details on the * syntax of regular expression patterns are given below. * *
* To compile a regular expression (RE), you can simply construct an RE * matcher object from the string specification of the pattern, like this: * *
* RE r = new RE("a*b"); ** *
* Once you have done this, you can call either of the RE.match methods to * perform matching on a String. For example: * *
* boolean matched = r.match("aaaab"); ** * will cause the boolean matched to be set to true because the * pattern "a*b" matches the string "aaaab". * *
* If you were interested in the number of a's which matched the * first part of our example expression, you could change the expression to * "(a*)b". Then when you compiled the expression and matched it against * something like "xaaaab", you would get results like this: * *
* RE r = new RE("(a*)b"); // Compile expression * boolean matched = r.match("xaaaab"); // Match against "xaaaab" * * String wholeExpr = r.getParen(0); // wholeExpr will be 'aaaab' * String insideParens = r.getParen(1); // insideParens will be 'aaaa' * * int startWholeExpr = r.getParenStart(0); // startWholeExpr will be index 1 * int endWholeExpr = r.getParenEnd(0); // endWholeExpr will be index 6 * int lenWholeExpr = r.getParenLength(0); // lenWholeExpr will be 5 * * int startInside = r.getParenStart(1); // startInside will be index 1 * int endInside = r.getParenEnd(1); // endInside will be index 5 * int lenInside = r.getParenLength(1); // lenInside will be 4 ** * You can also refer to the contents of a parenthesized expression * within a regular expression itself. This is called a * 'backreference'. The first backreference in a regular expression is * denoted by \1, the second by \2 and so on. So the expression: * *
* ([0-9]+)=\1 ** * will match any string of the form n=n (like 0=0 or 2=2). * *
* The full regular expression syntax accepted by RE is described here: * *
* * Characters * * unicodeChar Matches any identical unicode character * \ Used to quote a meta-character (like '*') * \\ Matches a single '\' character * \0nnn Matches a given octal character * \xhh Matches a given 8-bit hexadecimal character * \\uhhhh Matches a given 16-bit hexadecimal character * \t Matches an ASCII tab character * \n Matches an ASCII newline character * \r Matches an ASCII return character * \f Matches an ASCII form feed character * * * Character Classes * * [abc] Simple character class * [a-zA-Z] Character class with ranges * [^abc] Negated character class ** * NOTE: Incomplete ranges will be interpreted as "starts * from zero" or "ends with last character". *
* * Standard POSIX Character Classes * * [:alnum:] Alphanumeric characters. * [:alpha:] Alphabetic characters. * [:blank:] Space and tab characters. * [:cntrl:] Control characters. * [:digit:] Numeric characters. * [:graph:] Characters that are printable and are also visible. * (A space is printable, but not visible, while an * `a' is both.) * [:lower:] Lower-case alphabetic characters. * [:print:] Printable characters (characters that are not * control characters.) * [:punct:] Punctuation characters (characters that are not letter, * digits, control characters, or space characters). * [:space:] Space characters (such as space, tab, and formfeed, * to name a few). * [:upper:] Upper-case alphabetic characters. * [:xdigit:] Characters that are hexadecimal digits. * * * Non-standard POSIX-style Character Classes * * [:javastart:] Start of a Java identifier * [:javapart:] Part of a Java identifier * * * Predefined Classes * * . Matches any character other than newline * \w Matches a "word" character (alphanumeric plus "_") * \W Matches a non-word character * \s Matches a whitespace character * \S Matches a non-whitespace character * \d Matches a digit character * \D Matches a non-digit character * * * Boundary Matchers * * ^ Matches only at the beginning of a line * $ Matches only at the end of a line * \b Matches only at a word boundary * \B Matches only at a non-word boundary * * * Greedy Closures * * A* Matches A 0 or more times (greedy) * A+ Matches A 1 or more times (greedy) * A? Matches A 1 or 0 times (greedy) * A{n} Matches A exactly n times (greedy) * A{n,} Matches A at least n times (greedy) * A{n,m} Matches A at least n but not more than m times (greedy) * * * Reluctant Closures * * A*? Matches A 0 or more times (reluctant) * A+? Matches A 1 or more times (reluctant) * A?? Matches A 0 or 1 times (reluctant) * * * Logical Operators * * AB Matches A followed by B * A|B Matches either A or B * (A) Used for subexpression grouping * (?:A) Used for subexpression clustering (just like grouping but * no backrefs) * * * Backreferences * * \1 Backreference to 1st parenthesized subexpression * \2 Backreference to 2nd parenthesized subexpression * \3 Backreference to 3rd parenthesized subexpression * \4 Backreference to 4th parenthesized subexpression * \5 Backreference to 5th parenthesized subexpression * \6 Backreference to 6th parenthesized subexpression * \7 Backreference to 7th parenthesized subexpression * \8 Backreference to 8th parenthesized subexpression * \9 Backreference to 9th parenthesized subexpression ** *
* All closure operators (+, *, ?, {m,n}) are greedy by default, meaning * that they match as many elements of the string as possible without * causing the overall match to fail. If you want a closure to be * reluctant (non-greedy), you can simply follow it with a '?'. A * reluctant closure will match as few elements of the string as * possible when finding matches. {m,n} closures don't currently * support reluctancy. * *
* Line terminators
*
* A line terminator is a one- or two-character sequence that marks
* the end of a line of the input character sequence. The following
* are recognized as line terminators:
*
* RE runs programs compiled by the RECompiler class. But the RE * matcher class does not include the actual regular expression compiler * for reasons of efficiency. In fact, if you want to pre-compile one * or more regular expressions, the 'recompile' class can be invoked * from the command line to produce compiled output like this: * *
* // Pre-compiled regular expression "a*b" * char[] re1Instructions = * { * 0x007c, 0x0000, 0x001a, 0x007c, 0x0000, 0x000d, 0x0041, * 0x0001, 0x0004, 0x0061, 0x007c, 0x0000, 0x0003, 0x0047, * 0x0000, 0xfff6, 0x007c, 0x0000, 0x0003, 0x004e, 0x0000, * 0x0003, 0x0041, 0x0001, 0x0004, 0x0062, 0x0045, 0x0000, * 0x0000, * }; * * * REProgram re1 = new REProgram(re1Instructions); ** * You can then construct a regular expression matcher (RE) object from * the pre-compiled expression re1 and thus avoid the overhead of * compiling the expression at runtime. If you require more dynamic * regular expressions, you can construct a single RECompiler object and * re-use it to compile each expression. Similarly, you can change the * program run by a given matcher object at any time. However, RE and * RECompiler are not threadsafe (for efficiency reasons, and because * requiring thread safety in this class is deemed to be a rare * requirement), so you will need to construct a separate compiler or * matcher object for each thread (unless you do thread synchronization * yourself). Once expression compiled into the REProgram object, REProgram * can be safely shared across multiple threads and RE objects. * *
*
*
* ISSUES:
*
*
*
*
*
*
* @see recompile
* @see RECompiler
*
* @author Jonathan Locke
* @author Tobias Schäfer
*/
public class RE implements Serializable
{
/**
* Specifies normal, case-sensitive matching behaviour.
*/
public static final int MATCH_NORMAL = 0x0000;
/**
* Flag to indicate that matching should be case-independent (folded)
*/
public static final int MATCH_CASEINDEPENDENT = 0x0001;
/**
* Newlines should match as BOL/EOL (^ and $)
*/
public static final int MATCH_MULTILINE = 0x0002;
/**
* Consider all input a single body of text - newlines are matched by .
*/
public static final int MATCH_SINGLELINE = 0x0004;
/************************************************
* *
* The format of a node in a program is: *
* *
* [ OPCODE ] [ OPDATA ] [ OPNEXT ] [ OPERAND ] *
* *
* char OPCODE - instruction *
* char OPDATA - modifying data *
* char OPNEXT - next node (relative offset) *
* *
************************************************/
// Opcode Char Opdata/Operand Meaning
// ---------- ---------- --------------- --------------------------------------------------
static final char OP_END = 'E'; // end of program
static final char OP_BOL = '^'; // match only if at beginning of line
static final char OP_EOL = '$'; // match only if at end of line
static final char OP_ANY = '.'; // match any single character except newline
static final char OP_ANYOF = '['; // count/ranges match any char in the list of ranges
static final char OP_BRANCH = '|'; // node match this alternative or the next one
static final char OP_ATOM = 'A'; // length/string length of string followed by string itself
static final char OP_STAR = '*'; // node kleene closure
static final char OP_PLUS = '+'; // node positive closure
static final char OP_MAYBE = '?'; // node optional closure
static final char OP_ESCAPE = '\\'; // escape special escape code char class (escape is E_* code)
static final char OP_OPEN = '('; // number nth opening paren
static final char OP_OPEN_CLUSTER = '<'; // opening cluster
static final char OP_CLOSE = ')'; // number nth closing paren
static final char OP_CLOSE_CLUSTER = '>'; // closing cluster
static final char OP_BACKREF = '#'; // number reference nth already matched parenthesized string
static final char OP_GOTO = 'G'; // nothing but a (back-)pointer
static final char OP_NOTHING = 'N'; // match null string such as in '(a|)'
static final char OP_RELUCTANTSTAR = '8'; // none/expr reluctant '*' (mnemonic for char is unshifted '*')
static final char OP_RELUCTANTPLUS = '='; // none/expr reluctant '+' (mnemonic for char is unshifted '+')
static final char OP_RELUCTANTMAYBE = '/'; // none/expr reluctant '?' (mnemonic for char is unshifted '?')
static final char OP_POSIXCLASS = 'P'; // classid one of the posix character classes
// Escape codes
static final char E_ALNUM = 'w'; // Alphanumeric
static final char E_NALNUM = 'W'; // Non-alphanumeric
static final char E_BOUND = 'b'; // Word boundary
static final char E_NBOUND = 'B'; // Non-word boundary
static final char E_SPACE = 's'; // Whitespace
static final char E_NSPACE = 'S'; // Non-whitespace
static final char E_DIGIT = 'd'; // Digit
static final char E_NDIGIT = 'D'; // Non-digit
// Posix character classes
static final char POSIX_CLASS_ALNUM = 'w'; // Alphanumerics
static final char POSIX_CLASS_ALPHA = 'a'; // Alphabetics
static final char POSIX_CLASS_BLANK = 'b'; // Blanks
static final char POSIX_CLASS_CNTRL = 'c'; // Control characters
static final char POSIX_CLASS_DIGIT = 'd'; // Digits
static final char POSIX_CLASS_GRAPH = 'g'; // Graphic characters
static final char POSIX_CLASS_LOWER = 'l'; // Lowercase characters
static final char POSIX_CLASS_PRINT = 'p'; // Printable characters
static final char POSIX_CLASS_PUNCT = '!'; // Punctuation
static final char POSIX_CLASS_SPACE = 's'; // Spaces
static final char POSIX_CLASS_UPPER = 'u'; // Uppercase characters
static final char POSIX_CLASS_XDIGIT = 'x'; // Hexadecimal digits
static final char POSIX_CLASS_JSTART = 'j'; // Java identifier start
static final char POSIX_CLASS_JPART = 'k'; // Java identifier part
// Limits
static final int maxNode = 65536; // Maximum number of nodes in a program
static final int MAX_PAREN = 16; // Number of paren pairs (only 9 can be backrefs)
// Node layout constants
static final int offsetOpcode = 0; // Opcode offset (first character)
static final int offsetOpdata = 1; // Opdata offset (second char)
static final int offsetNext = 2; // Next index offset (third char)
static final int nodeSize = 3; // Node size (in chars)
// State of current program
REProgram program; // Compiled regular expression 'program'
transient CharacterIterator search; // The string being matched against
int matchFlags; // Match behaviour flags
int maxParen = MAX_PAREN;
// Parenthesized subexpressions
transient int parenCount; // Number of subexpressions matched (num open parens + 1)
transient int start0; // Cache of start[0]
transient int end0; // Cache of start[0]
transient int start1; // Cache of start[1]
transient int end1; // Cache of start[1]
transient int start2; // Cache of start[2]
transient int end2; // Cache of start[2]
transient int[] startn; // Lazy-alloced array of sub-expression starts
transient int[] endn; // Lazy-alloced array of sub-expression ends
// Backreferences
transient int[] startBackref; // Lazy-alloced array of backref starts
transient int[] endBackref; // Lazy-alloced array of backref ends
/**
* Constructs a regular expression matcher from a String by compiling it
* using a new instance of RECompiler. If you will be compiling many
* expressions, you may prefer to use a single RECompiler object instead.
*
* @param pattern The regular expression pattern to compile.
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
* @see RECompiler
* @see recompile
*/
public RE(String pattern) throws RESyntaxException
{
this(pattern, MATCH_NORMAL);
}
/**
* Constructs a regular expression matcher from a String by compiling it
* using a new instance of RECompiler. If you will be compiling many
* expressions, you may prefer to use a single RECompiler object instead.
*
* @param pattern The regular expression pattern to compile.
* @param matchFlags The matching style
* @exception RESyntaxException Thrown if the regular expression has invalid syntax.
* @see RECompiler
* @see recompile
*/
public RE(String pattern, int matchFlags) throws RESyntaxException
{
this(new RECompiler().compile(pattern));
setMatchFlags(matchFlags);
}
/**
* Construct a matcher for a pre-compiled regular expression from program
* (bytecode) data. Permits special flags to be passed in to modify matching
* behaviour.
*
* @param program Compiled regular expression program (see RECompiler and/or recompile)
* @param matchFlags One or more of the RE match behaviour flags (RE.MATCH_*):
*
*
* MATCH_NORMAL // Normal (case-sensitive) matching * MATCH_CASEINDEPENDENT // Case folded comparisons * MATCH_MULTILINE // Newline matches as BOL/EOL ** * @see RECompiler * @see REProgram * @see recompile */ public RE(REProgram program, int matchFlags) { setProgram(program); setMatchFlags(matchFlags); } /** * Construct a matcher for a pre-compiled regular expression from program * (bytecode) data. * * @param program Compiled regular expression program * @see RECompiler * @see recompile */ public RE(REProgram program) { this(program, MATCH_NORMAL); } /** * Constructs a regular expression matcher with no initial program. * This is likely to be an uncommon practice, but is still supported. */ public RE() { this((REProgram)null, MATCH_NORMAL); } /** * Converts a 'simplified' regular expression to a full regular expression * * @param pattern The pattern to convert * @return The full regular expression */ public static String simplePatternToFullRegularExpression(String pattern) { StringBuffer buf = new StringBuffer(); for (int i = 0; i < pattern.length(); i++) { char c = pattern.charAt(i); switch (c) { case '*': buf.append(".*"); break; case '.': case '[': case ']': case '\\': case '+': case '?': case '{': case '}': case '$': case '^': case '|': case '(': case ')': buf.append('\\'); default: buf.append(c); break; } } return buf.toString(); } /** * Sets match behaviour flags which alter the way RE does matching. * @param matchFlags One or more of the RE match behaviour flags (RE.MATCH_*): * *
* MATCH_NORMAL // Normal (case-sensitive) matching * MATCH_CASEINDEPENDENT // Case folded comparisons * MATCH_MULTILINE // Newline matches as BOL/EOL **/ public void setMatchFlags(int matchFlags) { this.matchFlags = matchFlags; } /** * Returns the current match behaviour flags. * @return Current match behaviour flags (RE.MATCH_*). * *
* MATCH_NORMAL // Normal (case-sensitive) matching * MATCH_CASEINDEPENDENT // Case folded comparisons * MATCH_MULTILINE // Newline matches as BOL/EOL ** * @see #setMatchFlags */ public int getMatchFlags() { return matchFlags; } /** * Sets the current regular expression program used by this matcher object. * * @param program Regular expression program compiled by RECompiler. * @see RECompiler * @see REProgram * @see recompile */ public void setProgram(REProgram program) { this.program = program; if (program != null && program.maxParens != -1) { this.maxParen = program.maxParens; } else { this.maxParen = MAX_PAREN; } } /** * Returns the current regular expression program in use by this matcher object. * * @return Regular expression program * @see #setProgram */ public REProgram getProgram() { return program; } /** * Returns the number of parenthesized subexpressions available after a successful match. * * @return Number of available parenthesized subexpressions */ public int getParenCount() { return parenCount; } /** * Gets the contents of a parenthesized subexpression after a successful match. * * @param which Nesting level of subexpression * @return String */ public String getParen(int which) { int start; if (which < parenCount && (start = getParenStart(which)) >= 0) { return search.substring(start, getParenEnd(which)); } return null; } /** * Returns the start index of a given paren level. * * @param which Nesting level of subexpression * @return String index */ public final int getParenStart(int which) { if (which < parenCount) { switch (which) { case 0: return start0; case 1: return start1; case 2: return start2; default: if (startn == null) { allocParens(); } return startn[which]; } } return -1; } /** * Returns the end index of a given paren level. * * @param which Nesting level of subexpression * @return String index */ public final int getParenEnd(int which) { if (which < parenCount) { switch (which) { case 0: return end0; case 1: return end1; case 2: return end2; default: if (endn == null) { allocParens(); } return endn[which]; } } return -1; } /** * Returns the length of a given paren level. * * @param which Nesting level of subexpression * @return Number of characters in the parenthesized subexpression */ public final int getParenLength(int which) { if (which < parenCount) { return getParenEnd(which) - getParenStart(which); } return -1; } /** * Sets the start of a paren level * * @param which Which paren level * @param i Index in input array */ protected final void setParenStart(int which, int i) { if (which < parenCount) { switch (which) { case 0: start0 = i; break; case 1: start1 = i; break; case 2: start2 = i; break; default: if (startn == null) { allocParens(); } startn[which] = i; break; } } } /** * Sets the end of a paren level * * @param which Which paren level * @param i Index in input array */ protected final void setParenEnd(int which, int i) { if (which < parenCount) { switch (which) { case 0: end0 = i; break; case 1: end1 = i; break; case 2: end2 = i; break; default: if (endn == null) { allocParens(); } endn[which] = i; break; } } } /** * Throws an Error representing an internal error condition probably resulting * from a bug in the regular expression compiler (or possibly data corruption). * In practice, this should be very rare. * * @param s Error description */ protected void internalError(String s) throws Error { throw new Error("RE internal error: " + s); } /** * Performs lazy allocation of subexpression arrays */ private final void allocParens() { // Allocate arrays for subexpressions startn = new int[maxParen]; endn = new int[maxParen]; // Set sub-expression pointers to invalid values for (int i = 0; i < maxParen; i++) { startn[i] = -1; endn[i] = -1; } } /** * Try to match a string against a subset of nodes in the program * * @param firstNode Node to start at in program * @param lastNode Last valid node (used for matching a subexpression without * matching the rest of the program as well). * @param idxStart Starting position in character array * @return Final input array index if match succeeded. -1 if not. */ protected int matchNodes(int firstNode, int lastNode, int idxStart) { // Our current place in the string int idx = idxStart; // Loop while node is valid int next, opcode, opdata; int idxNew; char[] instruction = program.instruction; for (int node = firstNode; node < lastNode; ) { opcode = instruction[node + offsetOpcode]; next = node + (short)instruction[node + offsetNext]; opdata = instruction[node + offsetOpdata]; switch (opcode) { case OP_RELUCTANTMAYBE: { int once = 0; do { // Try to match the rest without using the reluctant subexpr if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { return idxNew; } } while ((once++ == 0) && (idx = matchNodes(node + nodeSize, next, idx)) != -1); return -1; } case OP_RELUCTANTPLUS: while ((idx = matchNodes(node + nodeSize, next, idx)) != -1) { // Try to match the rest without using the reluctant subexpr if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { return idxNew; } } return -1; case OP_RELUCTANTSTAR: do { // Try to match the rest without using the reluctant subexpr if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { return idxNew; } } while ((idx = matchNodes(node + nodeSize, next, idx)) != -1); return -1; case OP_OPEN: // Match subexpression if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { startBackref[opdata] = idx; } if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { // Increase valid paren count if ((opdata + 1) > parenCount) { parenCount = opdata + 1; } // Don't set paren if already set later on if (getParenStart(opdata) == -1) { setParenStart(opdata, idx); } } return idxNew; case OP_CLOSE: // Done matching subexpression if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { endBackref[opdata] = idx; } if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { // Increase valid paren count if ((opdata + 1) > parenCount) { parenCount = opdata + 1; } // Don't set paren if already set later on if (getParenEnd(opdata) == -1) { setParenEnd(opdata, idx); } } return idxNew; case OP_OPEN_CLUSTER: case OP_CLOSE_CLUSTER: // starting or ending the matching of a subexpression which has no backref. return matchNodes( next, maxNode, idx ); case OP_BACKREF: { // Get the start and end of the backref int s = startBackref[opdata]; int e = endBackref[opdata]; // We don't know the backref yet if (s == -1 || e == -1) { return -1; } // The backref is empty size if (s == e) { break; } // Get the length of the backref int l = e - s; // If there's not enough input left, give up. if (search.isEnd(idx + l - 1)) { return -1; } // Case fold the backref? final boolean caseFold = ((matchFlags & MATCH_CASEINDEPENDENT) != 0); // Compare backref to input for (int i = 0; i < l; i++) { if (compareChars(search.charAt(idx++), search.charAt(s + i), caseFold) != 0) { return -1; } } } break; case OP_BOL: // Fail if we're not at the start of the string if (idx != 0) { // If we're multiline matching, we could still be at the start of a line if ((matchFlags & MATCH_MULTILINE) == MATCH_MULTILINE) { // If not at start of line, give up if (idx <= 0 || !isNewline(idx - 1)) { return -1; } else { break; } } return -1; } break; case OP_EOL: // If we're not at the end of string if (!search.isEnd(0) && !search.isEnd(idx)) { // If we're multi-line matching if ((matchFlags & MATCH_MULTILINE) == MATCH_MULTILINE) { // Give up if we're not at the end of a line if (!isNewline(idx)) { return -1; } else { break; } } return -1; } break; case OP_ESCAPE: // Which escape? switch (opdata) { // Word boundary match case E_NBOUND: case E_BOUND: { char cLast = ((idx == 0) ? '\n' : search.charAt(idx - 1)); char cNext = ((search.isEnd(idx)) ? '\n' : search.charAt(idx)); if ((Character.isLetterOrDigit(cLast) == Character.isLetterOrDigit(cNext)) == (opdata == E_BOUND)) { return -1; } } break; // Alpha-numeric, digit, space, javaLetter, javaLetterOrDigit case E_ALNUM: case E_NALNUM: case E_DIGIT: case E_NDIGIT: case E_SPACE: case E_NSPACE: // Give up if out of input if (search.isEnd(idx)) { return -1; } char c = search.charAt(idx); // Switch on escape switch (opdata) { case E_ALNUM: case E_NALNUM: if (!((Character.isLetterOrDigit(c) || c == '_') == (opdata == E_ALNUM))) { return -1; } break; case E_DIGIT: case E_NDIGIT: if (!(Character.isDigit(c) == (opdata == E_DIGIT))) { return -1; } break; case E_SPACE: case E_NSPACE: if (!(Character.isWhitespace(c) == (opdata == E_SPACE))) { return -1; } break; } idx++; break; default: internalError("Unrecognized escape '" + opdata + "'"); } break; case OP_ANY: if ((matchFlags & MATCH_SINGLELINE) == MATCH_SINGLELINE) { // Match anything if (search.isEnd(idx)) { return -1; } } else { // Match anything but a newline if (search.isEnd(idx) || isNewline(idx)) { return -1; } } idx++; break; case OP_ATOM: { // Match an atom value if (search.isEnd(idx)) { return -1; } // Get length of atom and starting index int lenAtom = opdata; int startAtom = node + nodeSize; // Give up if not enough input remains to have a match if (search.isEnd(lenAtom + idx - 1)) { return -1; } // Match atom differently depending on casefolding flag final boolean caseFold = ((matchFlags & MATCH_CASEINDEPENDENT) != 0); for (int i = 0; i < lenAtom; i++) { if (compareChars(search.charAt(idx++), instruction[startAtom + i], caseFold) != 0) { return -1; } } } break; case OP_POSIXCLASS: { // Out of input? if (search.isEnd(idx)) { return -1; } switch (opdata) { case POSIX_CLASS_ALNUM: if (!Character.isLetterOrDigit(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_ALPHA: if (!Character.isLetter(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_DIGIT: if (!Character.isDigit(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_BLANK: // JWL - bugbug: is this right?? if (!Character.isSpaceChar(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_SPACE: if (!Character.isWhitespace(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_CNTRL: if (Character.getType(search.charAt(idx)) != Character.CONTROL) { return -1; } break; case POSIX_CLASS_GRAPH: // JWL - bugbug??? switch (Character.getType(search.charAt(idx))) { case Character.MATH_SYMBOL: case Character.CURRENCY_SYMBOL: case Character.MODIFIER_SYMBOL: case Character.OTHER_SYMBOL: break; default: return -1; } break; case POSIX_CLASS_LOWER: if (Character.getType(search.charAt(idx)) != Character.LOWERCASE_LETTER) { return -1; } break; case POSIX_CLASS_UPPER: if (Character.getType(search.charAt(idx)) != Character.UPPERCASE_LETTER) { return -1; } break; case POSIX_CLASS_PRINT: if (Character.getType(search.charAt(idx)) == Character.CONTROL) { return -1; } break; case POSIX_CLASS_PUNCT: { int type = Character.getType(search.charAt(idx)); switch(type) { case Character.DASH_PUNCTUATION: case Character.START_PUNCTUATION: case Character.END_PUNCTUATION: case Character.CONNECTOR_PUNCTUATION: case Character.OTHER_PUNCTUATION: break; default: return -1; } } break; case POSIX_CLASS_XDIGIT: // JWL - bugbug?? { boolean isXDigit = ((search.charAt(idx) >= '0' && search.charAt(idx) <= '9') || (search.charAt(idx) >= 'a' && search.charAt(idx) <= 'f') || (search.charAt(idx) >= 'A' && search.charAt(idx) <= 'F')); if (!isXDigit) { return -1; } } break; case POSIX_CLASS_JSTART: if (!Character.isJavaIdentifierStart(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_JPART: if (!Character.isJavaIdentifierPart(search.charAt(idx))) { return -1; } break; default: internalError("Bad posix class"); break; } // Matched. idx++; } break; case OP_ANYOF: { // Out of input? if (search.isEnd(idx)) { return -1; } // Get character to match against character class and maybe casefold char c = search.charAt(idx); boolean caseFold = (matchFlags & MATCH_CASEINDEPENDENT) != 0; // Loop through character class checking our match character int idxRange = node + nodeSize; int idxEnd = idxRange + (opdata * 2); boolean match = false; for (int i = idxRange; !match && i < idxEnd; ) { // Get start, end and match characters char s = instruction[i++]; char e = instruction[i++]; match = ((compareChars(c, s, caseFold) >= 0) && (compareChars(c, e, caseFold) <= 0)); } // Fail if we didn't match the character class if (!match) { return -1; } idx++; } break; case OP_BRANCH: { // Check for choices if (instruction[next + offsetOpcode] != OP_BRANCH) { // If there aren't any other choices, just evaluate this branch. node += nodeSize; continue; } // Try all available branches short nextBranch; do { // Try matching the branch against the string if ((idxNew = matchNodes(node + nodeSize, maxNode, idx)) != -1) { return idxNew; } // Go to next branch (if any) nextBranch = (short)instruction[node + offsetNext]; node += nextBranch; } while (nextBranch != 0 && (instruction[node + offsetOpcode] == OP_BRANCH)); // Failed to match any branch! return -1; } case OP_NOTHING: case OP_GOTO: // Just advance to the next node without doing anything break; case OP_END: // Match has succeeded! setParenEnd(0, idx); return idx; default: // Corrupt program internalError("Invalid opcode '" + opcode + "'"); } // Advance to the next node in the program node = next; } // We "should" never end up here internalError("Corrupt program"); return -1; } /** * Match the current regular expression program against the current * input string, starting at index i of the input string. This method * is only meant for internal use. * * @param i The input string index to start matching at * @return True if the input matched the expression */ protected boolean matchAt(int i) { // Initialize start pointer, paren cache and paren count start0 = -1; end0 = -1; start1 = -1; end1 = -1; start2 = -1; end2 = -1; startn = null; endn = null; parenCount = 1; setParenStart(0, i); // Allocate backref arrays (unless optimizations indicate otherwise) if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { startBackref = new int[maxParen]; endBackref = new int[maxParen]; } // Match against string int idx; if ((idx = matchNodes(0, maxNode, i)) != -1) { setParenEnd(0, idx); return true; } // Didn't match parenCount = 0; return false; } /** * Matches the current regular expression program against a character array, * starting at a given index. * * @param search String to match against * @param i Index to start searching at * @return True if string matched */ public boolean match(String search, int i) { return match(new StringCharacterIterator(search), i); } /** * Matches the current regular expression program against a character array, * starting at a given index. * * @param search String to match against * @param i Index to start searching at * @return True if string matched */ public boolean match(CharacterIterator search, int i) { // There is no compiled program to search with! if (program == null) { // This should be uncommon enough to be an error case rather // than an exception (which would have to be handled everywhere) internalError("No RE program to run!"); } // Save string to search this.search = search; // Can we optimize the search by looking for a prefix string? if (program.prefix == null) { // Unprefixed matching must try for a match at each character for ( ;! search.isEnd(i - 1); i++) { // Try a match at index i if (matchAt(i)) { return true; } } return false; } else { // Prefix-anchored matching is possible boolean caseIndependent = (matchFlags & MATCH_CASEINDEPENDENT) != 0; char[] prefix = program.prefix; for ( ; !search.isEnd(i + prefix.length - 1); i++) { int j = i; int k = 0; boolean match; do { // If there's a mismatch of any character in the prefix, give up match = (compareChars(search.charAt(j++), prefix[k++], caseIndependent) == 0); } while (match && k < prefix.length); // See if the whole prefix string matched if (k == prefix.length) { // We matched the full prefix at firstChar, so try it if (matchAt(i)) { return true; } } } return false; } } /** * Matches the current regular expression program against a String. * * @param search String to match against * @return True if string matched */ public boolean match(String search) { return match(search, 0); } /** * Splits a string into an array of strings on regular expression boundaries. * This function works the same way as the Perl function of the same name. * Given a regular expression of "[ab]+" and a string to split of * "xyzzyababbayyzabbbab123", the result would be the array of Strings * "[xyzzy, yyz, 123]". * *
Please note that the first string in the resulting array may be an empty * string. This happens when the very first character of input string is * matched by the pattern. * * @param s String to split on this regular exression * @return Array of strings */ public String[] split(String s) { // Create new vector Vector v = new Vector(); // Start at position 0 and search the whole string int pos = 0; int len = s.length(); // Try a match at each position while (pos < len && match(s, pos)) { // Get start of match int start = getParenStart(0); // Get end of match int newpos = getParenEnd(0); // Check if no progress was made if (newpos == pos) { v.addElement(s.substring(pos, start + 1)); newpos++; } else { v.addElement(s.substring(pos, start)); } // Move to new position pos = newpos; } // Push remainder if it's not empty String remainder = s.substring(pos); if (remainder.length() != 0) { v.addElement(remainder); } // Return vector as an array of strings String[] ret = new String[v.size()]; v.copyInto(ret); return ret; } /** * Flag bit that indicates that subst should replace all occurrences of this * regular expression. */ public static final int REPLACE_ALL = 0x0000; /** * Flag bit that indicates that subst should only replace the first occurrence * of this regular expression. */ public static final int REPLACE_FIRSTONLY = 0x0001; /** * Flag bit that indicates that subst should replace backreferences */ public static final int REPLACE_BACKREFERENCES = 0x0002; /** * Substitutes a string for this regular expression in another string. * This method works like the Perl function of the same name. * Given a regular expression of "a*b", a String to substituteIn of * "aaaabfooaaabgarplyaaabwackyb" and the substitution String "-", the * resulting String returned by subst would be "-foo-garply-wacky-". * * @param substituteIn String to substitute within * @param substitution String to substitute for all matches of this regular expression. * @return The string substituteIn with zero or more occurrences of the current * regular expression replaced with the substitution String (if this regular * expression object doesn't match at any position, the original String is returned * unchanged). */ public String subst(String substituteIn, String substitution) { return subst(substituteIn, substitution, REPLACE_ALL); } /** * Substitutes a string for this regular expression in another string. * This method works like the Perl function of the same name. * Given a regular expression of "a*b", a String to substituteIn of * "aaaabfooaaabgarplyaaabwackyb" and the substitution String "-", the * resulting String returned by subst would be "-foo-garply-wacky-". *
* It is also possible to reference the contents of a parenthesized expression * with $0, $1, ... $9. A regular expression of "http://[\\.\\w\\-\\?/~_@&=%]+", * a String to substituteIn of "visit us: http://www.apache.org!" and the * substitution String "<a href=\"$0\">$0</a>", the resulting String * returned by subst would be * "visit us: <a href=\"http://www.apache.org\">http://www.apache.org</a>!". *
* Note: $0 represents the whole match.
*
* @param substituteIn String to substitute within
* @param substitution String to substitute for matches of this regular expression
* @param flags One or more bitwise flags from REPLACE_*. If the REPLACE_FIRSTONLY
* flag bit is set, only the first occurrence of this regular expression is replaced.
* If the bit is not set (REPLACE_ALL), all occurrences of this pattern will be
* replaced. If the flag REPLACE_BACKREFERENCES is set, all backreferences will
* be processed.
* @return The string substituteIn with zero or more occurrences of the current
* regular expression replaced with the substitution String (if this regular
* expression object doesn't match at any position, the original String is returned
* unchanged).
*/
public String subst(String substituteIn, String substitution, int flags)
{
// String to return
StringBuffer ret = new StringBuffer();
// Start at position 0 and search the whole string
int pos = 0;
int len = substituteIn.length();
// Try a match at each position
while (pos < len && match(substituteIn, pos))
{
// Append string before match
ret.append(substituteIn.substring(pos, getParenStart(0)));
if ((flags & REPLACE_BACKREFERENCES) != 0)
{
// Process backreferences
int lCurrentPosition = 0;
int lLastPosition = -2;
int lLength = substitution.length();
boolean bAddedPrefix = false;
while ((lCurrentPosition = substitution.indexOf("$", lCurrentPosition)) >= 0)
{
if ((lCurrentPosition == 0 || substitution.charAt(lCurrentPosition - 1) != '\\')
&& lCurrentPosition+1 < lLength)
{
char c = substitution.charAt(lCurrentPosition + 1);
if (c >= '0' && c <= '9')
{
if (bAddedPrefix == false)
{
// Append everything between the beginning of the
// substitution string and the current $ sign
ret.append(substitution.substring(0, lCurrentPosition));
bAddedPrefix = true;
}
else
{
// Append everything between the last and the current $ sign
ret.append(substitution.substring(lLastPosition + 2, lCurrentPosition));
}
// Append the parenthesized expression
// Note: if a parenthesized expression of the requested
// index is not available "null" is added to the string
ret.append(getParen(c - '0'));
lLastPosition = lCurrentPosition;
}
}
// Move forward, skipping past match
lCurrentPosition++;
}
// Append everything after the last $ sign
ret.append(substitution.substring(lLastPosition + 2, lLength));
}
else
{
// Append substitution without processing backreferences
ret.append(substitution);
}
// Move forward, skipping past match
int newpos = getParenEnd(0);
// We always want to make progress!
if (newpos == pos)
{
newpos++;
}
// Try new position
pos = newpos;
// Break out if we're only supposed to replace one occurrence
if ((flags & REPLACE_FIRSTONLY) != 0)
{
break;
}
}
// If there's remaining input, append it
if (pos < len)
{
ret.append(substituteIn.substring(pos));
}
// Return string buffer as string
return ret.toString();
}
/**
* Returns an array of Strings, whose toString representation matches a regular
* expression. This method works like the Perl function of the same name. Given
* a regular expression of "a*b" and an array of String objects of [foo, aab, zzz,
* aaaab], the array of Strings returned by grep would be [aab, aaaab].
*
* @param search Array of Objects to search
* @return Array of Strings whose toString() value matches this regular expression.
*/
public String[] grep(Object[] search)
{
// Create new vector to hold return items
Vector v = new Vector();
// Traverse array of objects
for (int i = 0; i < search.length; i++)
{
// Get next object as a string
String s = search[i].toString();
// If it matches this regexp, add it to the list
if (match(s))
{
v.addElement(s);
}
}
// Return vector as an array of strings
String[] ret = new String[v.size()];
v.copyInto(ret);
return ret;
}
/**
* @return true if character at i-th position in the search
string is a newline
*/
private boolean isNewline(int i)
{
char nextChar = search.charAt(i);
if (nextChar == '\n' || nextChar == '\r' || nextChar == '\u0085'
|| nextChar == '\u2028' || nextChar == '\u2029')
{
return true;
}
return false;
}
/**
* Compares two characters.
*
* @param c1 first character to compare.
* @param c2 second character to compare.
* @param caseIndependent whether comparision is case insensitive or not.
* @return negative, 0, or positive integer as the first character
* less than, equal to, or greater then the second.
*/
private int compareChars(char c1, char c2, boolean caseIndependent)
{
if (caseIndependent)
{
c1 = Character.toLowerCase(c1);
c2 = Character.toLowerCase(c2);
}
return ((int)c1 - (int)c2);
}
}