
Translating Haskell into Isabelle

Paolo Torrini, Till Mossakowski, Christian Maeder

Informatik, Universitaet Bremen

Abstract. Two partial translations of Haskell into Isabelle higher-order

logics have been implemented as functions of Hets, a Haskell-based system

for proof-management and program development that allows for integra-

tion with other verification tools. Our application can translate simple

Haskell programs to HOLCF and, under stronger restrictions, to HOL.

Both translations use the static analysis of Programatica and are based

on a shallow embedding of denotations.

Translations between programming and specification languages, as well
as the corresponding integration of compilers, analyzers and theorem-
provers, can provide useful support to the formal development and ver-
ification of programs. This task involves translating programs to a logic
in which requirements can be expressed, in order to prove the corre-
sponding correctness statements. Program translation should rest on a
formal semantics of the programming language allowing for proofs that
are as easy as possible. In fact, it has long been argued that functional
languages, based on notions closer to general, mathematical ones, can
make the task of proving assertions on them easier, owing to the relative
clarity and simplicity of their semantics [Tho92].

In the following we are presenting automated translations of Haskell pro-
grams into Isabelle higher-order logics that can be justified in terms of
denotational semantics. Haskell is a strongly typed, purely functional
language with lazy evaluation, polymorphic types extended with type
constructor classes, and a syntax for side effects and pseudo-imperative
code based on monadic operators [PJ03]. The translations are imple-
mented as functions of Hets [MMLW03], an Haskell-based application
designed to support heterogeneous specification and formal development
of programs. Hets supplies with parsing, static analysis and proof man-
agement, as well as with interfaces to various language-specific tools.
As far as interactive proofs are concerned, it relies on an interface with
Isabelle, a generic theorem-prover written in SML that includes the for-
malization of several useful logics [Pau94]. Moreover, Hets relies on Pro-
gramatica [HHJK04] for the parsing and the static analysis of Haskell
programs. Programatica (built at OGI) is another Haskell-specific sys-
tem for formal development and it has a proof management on its own,
including a specification logic and translations to different proof tools,
notably to Isabelle [HMW05], albeit following a different approach from
ours (see section 2).



1 Isabelle

Isabelle-HOL (hereafter HOL) is the implementation in Isabelle of clas-
sical higher-order logic based on simply typed lambda calculus extended
with axiomatic type classes. It provides considerable support for reason-
ing about programming functions, both in terms of rich libraries and
efficient automation. Since the late nineties, it has essentially superseded
FOL (classical first-order logic) in standard use. HOL has an implemen-
tation of recursive functions based on Knaster-Tarski fixed-point theo-
rem. All functions are total; partiality may be dealt with by lifting types
through the option type constructor.

On the other hand, HOLCF [MNvOS99] is HOL conservatively extended
with the logic of computable functions — a formalization of domain the-
ory. In HOL, types — elements of class type — are just sets; functions
may not be computable, and a recursive function may require discharg-
ing proof obligations already at the stage of definition — in fact, a spe-
cific measure has to be given for the function to be proved monotonic.
In contrast, HOLCF has each type interpreted as an element of class
pcpo (pointed complete partially ordered sets) i.e. as a set with a partial
order which is closed w.r.t. ω-chains and has a bottom. In particular,
the Isabelle formalization of HOLCF is based on axiomatic type classes
[Wen05], making it possible to deal with complete partial orders in quite
an abstract way.

Domain theory offers a good basis for the semantical analysis of program-
ming languages. All functions defined over domains, including partial
ones, are continuous, therefore computable. Recursion can be expressed
in terms of least fixed-point operator, and so, in contrast with HOL, func-
tion definition does not depend on proofs. Nevertheless, proving theorems
may turn out to be comparatively hard. After being spared the need to
discharge proof obligations at the stage of giving definitions, one has to
bear with assumptions over the continuity of functions while actually
carrying out the proofs. A standard strategy to get the best out of the
two systems, is to define as much as possible in HOL, using HOLCF type
constructors to lift types only when this is necessary.

2 Translations

Translations can depend on the expressiveness of the target logic. As ex-
amples, the translations into FOL of Miranda [Tho94,Tho89,HT95] and
Haskell [Tho92], both based on large-step operational semantics, appear
to struggle with higher-order features such as currying. The translation
of Haskell to the Agda implementation of Martin-Loef type theory in
[ABB+05] seems to struggle with Haskell polymorphism. Higher-order
logic may in fact quite help overcome such obstacles. It also allows for
higher-level approaches based on denotational semantics, such as already
proposed in [HMW05] for a translation of Haskell into HOLCF, and in
[LP04] for a translation of ML into HOL. By using denotational seman-
tics, one may hope to give representations of programs that are closer to



their specification, and to give proofs that are relatively more abstract
and general.
A shallow embedding into a logical language is one that relies heavily on
its extra-logical features, possibly taking advantage of built-in packages
provided with the implementation of that language, particularly with
respect to types and recursion. On the contrary, a deep embedding relies
on the logical definition of all the relevant notions. This may give a plus in
semantical clarity and possibly, provided the logic is expressive enough,
in generality as well. Taking advantage of built-in features, on the other
hand, may help make theorem proving less specific and tedious.
The translation of ML in [LP04] based on the definition of a class of
types with bottom elements in HOL gives an example of the deep sort.
The translation of Haskell to HOLCF proposed in [HMW05] relies on
a generic formalization of domain theory and particularly on the fixrec
package for recursive functions, created to provide a friendly syntax cov-
ering also mutually recursive definitions. However, in order to capture
type constructor classes — an important feature of the Haskell type sys-
tem — a deep embedding approach is used there, as well. Haskell types
are translated to terms, relying on a domain-theoretic modelling of the
type system at the object level. The practical drawback of this approach
is that it leads to plenty of the automation built into Isabelle type check-
ing needing to be reimplemented.
In contrast with [HMW05], both the translations of Haskell to HOLCF
and HOL presented here are based on a shallow embedding approach.
In the case of HOLCF we use as well the fixrec package. Moreover, we
tend to rely as much as possible on similarities between type systems,
translating Haskell types to HOLCF types in a comparatively direct way.
Haskell classes are translated to Isabelle axiomatic classes. Since we are
trying to keep things as simple as possible, the modelling we rely on is
not very deep either: our claim is that the equivalence between Haskell
programs and their translation to HOLCF can be justified up to the
level of typeable output. This translation covers a significant part of the
syntax used in the Prelude, however there are several limitations related
to built-in types, pattern-matching, local definitions, import and export.
In particular, it does not cover type constructor classes yet, although we
have plans for an extention that should address this aspect.
The translation to HOL, similar in matter of shallow approach, is nev-
ertheless much more limited. First, it only covers primitive recursive
functions. This limitation appears relatively hard to overcome, given the
way syntax for full recursion is defined in HOL. Moreover, we have to
restrict to total functions. Operational equivalence for a larger fragment
could be obtained using option types, but this is not pursued here.

3 Translations in Hets

Information about Hets may be found in [Mos06] and [Mos06]. The
Haskell-to-Isabelle translation requires GHC, Isabelle 2006 and Progra-
matica. The command to run the application is
hets -v[1–5] -t Haskell2Isabelle[HOLCF — HOL] -o thy out in.hs



where arguments set options for verbosity, the logic, extension and name
of the output file, the last one being the input — a Haskell program given
as a GHC file (in.hs). This gets analyzed and translated, the result of a
successful run being an Isabelle theory file (out.thy) in the given logic.
The internal representation of Haskell in Hets (modules Logic Haskell
and HatAna) is the same as in Programatica, whereas the internal rep-
resentation of Isabelle (modules Logic Isabelle and IsaSign) is essentially
a Haskell reworking of the ML definition of Isabelle’s own base logic, ex-
tended in order to allow for a straightforward representation of HOL and
HOLCF.
Haskell programs and Isabelle theories are internally represented as Hets
theories — each of them formed by a signature and a set of sentences,
according to the theoretical framework described in [Mos05]. Each trans-
lation, defined in module Haskell2IsabelleHOLCF as composition of a
signature translation with a translation of all sentences, is essentially a
morphism from theories in the internal representation of the source lan-
guage to those in the representation of the target language. The module
IsaPrint contains functions for the pretty-printing of Isabelle theories.
Each translation relies on an Isabelle theory, respectively HsHOLCF, ex-
tending HOLCF, and HsHOL, extending HOL, which contain some useful
notions — notably definitions of lifting functions and an axiomatisation
for Haskell equality.

4 Naming conventions

Names of types as well as of terms are translated by a renaming function
that preserves them, up to avoidance of clashes with Isabelle keywords.
We also need to reserve a few names, as follows.
1) Names for type variables, in the translation to HOL: ’vX ; any string
terminating with ’XXn where n is an integer.
2) Names for term constants, in the translation to HOL: strings obtained
by joining together names of defined functions, using X as end sequence
and separator.
3) Names for term variables, in both translations: pXn, qXn, with n
integer.
4) Names for type destructors, in the translation to HOLCF: C n, where
C is a data constructor name and n is an integer.

4.1 Types

Our type translation are shallow and based on relative similarity of type
systems. Isabelle, as well as Haskell, is based on simple types with poly-
morphism (which means, essentially, type variables, function and product
types). They both have built-in types for Boolean values and integers,
and a type constructor for lists. Both allows for sums, recursive and mu-
tually recursive types in the form of datatype declarations. Finally, they
both have a class mechanism — although not quite the same.
The translation to HOLCF keeps into account partiality, i.e. the fact that
a function might be undefined for certain values, either because definition



is missing, or because the program does not terminate. It also keeps into
account laziness, i. e. the fact that by default function values in Haskell
are passed by name and evaluated only when needed. However, the idea
that underlies the translation is rather a simplifying one: although raising
an exception is different from running forever, and both are different from
stopping short of evaluation, still, from the point of view of the printable
output of ground types, these behaviours are similar and can be treated
semantically as such, i.e. using one and the same bottom element. So,
essentially, we are following the main lines of the “crude” denotational
semantics for lazy evaluation in [Win93], pp. 216–217.

Haskell type variables are translated to HOLCF ones, of class pcpo. Each
type in Isabelle has a sort, defined by the set of the classes of which it is a
member. Each built-in type is translated to the lifting of its correspond-
ing HOL type. The translation covers properly only Haskell Booleans
and unbounded integers, respectively associated to HOL Booleans and
integers. Bound integers and floating point numbers would require low-
level modelling, and have not been covered. Bounded integers are simply
treated as unbounded.

The HOLCF type constructor lift is used to lift HOL types to flat
domains. In the case of Booleans, HOLCF provides with type tr, de-
fined as bool lift. In the case of integers, we define dInt as int lift in
HsHOLCF. The types of Haskell functions and product are translated,
respectively, to HOLCF function spaces and lazy product — i.e. such
that ⊥ = (⊥ ∗ ⊥) 6= (⊥ ∗′ a) 6= (′a ∗ ⊥), consistently with lazy evalu-
ation. Type constructors are translated to corresponding HOLCF ones
(notably, parameters precede type constructors in Isabelle syntax). In
particular, lists are translated to the domain llist defined in HsHOLCF.

Type translation to HOLCF, apart from mutual dependencies, may be
summed up as follows (where t is a renaming function):

dae = ′at :: pcpo
dBoole = tr
dIntegere = dInt
da → be = dae → dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae llist
dTyCons a1 . . . ane = da1e . . . dane TyConst

The translation to HOL is more crude. It takes into account neither
partiality nor laziness; therefore, we need to require that all functions in
the program are total ones. An account of partiality could be obtained,
but here it is not, using the option type constructor to lift types, along
lines similar to those followed in HOLCF with lift.

Haskell types are mapped into corresponding, unlifted HOL ones — thus
so for Booleans and integers. All variables are of class type. HOL function
type, product and list are used to translate the corresponding Haskell
constructors. Type translation to HOL, apart from mutual dependencies,
may be summed up as follows.



dae = ′at :: type
dBoole = bool
dIntegere = int
da → be = dae ⇒ dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae list
dTyCons a1 . . . ane = da1e . . . dane TyConst

Under each translation, function declarations are associated, by using
the keyword consts, to the corresponding ones in HOLCF and HOL,
respectively. Datatype declarations are associated to the corresponding
ones, as well, but this involve some difference in the two cases. In HOLCF
datatype declarations define types of class pcpo by the keyword domain
(hence we may call them domain declarations). In HOL they define types
of class type by the keyword datatype. Notably, in contrast with Haskell
and HOL, HOLCF datatype declarations require an explicit introduction
of destructors; these are provided automatically according to the naming
pattern in Section 4, point 4. Apart from this aspect, the meta-level
features of the the two type translations are essentially similar.
Translation of mutually recursive datatypes, as the one shown in the
following example, relies on specific Isabelle syntax (using the keyword
and).

data AType a b = ABase a | AStep (AType a b) (BType a b)
data BType a b = BBase b | BStep (BType a b) (AType a b)

Translation to HOLCF gives the following.

domain (′a :: pcpo,′ b :: pcpo) BType = BBase (BBase 1 ::′ b) |
BStep (BStep 1 :: (′a,′ b) BType) (BStep 2 :: (′a,′ b) AType)

and (′a :: pcpo,′ b :: pcpo) AType = ABase (ABase 1 ::′ a) |
AStep (AStep 1 :: (′a,′ b) AType) (AStep 2 :: (′a,′ b) BType)

Translation to HOL gives the following.

datatype (′a,′ b) BType = BBase ′b |
BStep ((′a,′ b) BType) ((′a,′ b) AType)

and (′a,′ b) AType = ABase ′a |
AStep ((′a,′ b) AType) ((′a,′ b) BType)

In contrast with Haskell, order of declarations matters in Isabelle, where
they should always be listed according to their dependency. Both trans-
lations take care of this aspect automatically.

4.2 HOLCF: Sentences

Essentially, each function definition is translated to a corresponding ones.
Non-recursive definitions are translated to standard Isabelle definitions
(introduced by the keyword defs), whereas the translation of recursive



definitions relies on the fixrec package. Lambda abstraction is translated
as continuous abstraction (LAM ), function application as continuous
application (the dot operator). These notions coincide with the corre-
sponding ones in HOL, i.e. with lambda abstraction (% ) and standard
function application, whenever all arguments are continuous.
Terms of built-in type (Boolean and integer) are translated to lifted
HOL values, using the HOLCF-defined lifting function Def. The bottom
element ⊥ is used for all the undefined terms. We use the following
operator, defined in HsHOLCF, to map binary arithmetic functions to
lifted functions over lifted integers.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)
fliftbin f == LAM yx. (flift1 (%u. flift2 (%v. f v u))) · x · y

Boolean values are translated to values of tr — i.e. TT, FF and ⊥.
Boolean connectives are translated to the corresponding HOLCF lifted
operators. HOLCF-defined If then else fi and case syntax are used to
translate conditional and case expressions, respectively. There are some
restrictions, however, on the latter, due to limitations in the translation
of patterns (see Section 4.4); in particular, the case term should always
be a variable, and no nested patterns are allowed.
The translation of lists relies on the following domain, defined in
HsHOLCF.

domain ′a llist = lNil | lCons (lHd :: ′a) (lT l :: ′a llist)

Under the given interpretation, an infinite list as well as an undefined
one evaluate to ⊥. However, the value of finite prefixes, and particularly
the printable output associated to them, will be the expected one, since
the model of evaluation is lazy.
Haskell allows for local definitions by means of let and where expressions.
Those let expressions in which the left-hand side is a variable are trans-
lated to similar Isabelle ones; neither other let expressions (i.e. those
containing patterns on the left hand-side) nor where expressions are cov-
ered. The translation of terms (minus mutual recursion) may be summed
up, essentially, as follows:

dx :: ae = xt :: dae
dce = ct

d\x → fe = LAM xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = FIX ft. ft · dae . . . · dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe

In HOLCF all recursive functions can be defined by fixpoint operator
— a function that, given as argument the defining term abstracted of
the recursive call name, returns the corresponding recursive function.
Coding this directly turns out to be rather cumbersome, particularly in
the case of mutually recursive functions, where tuples of defining terms
and tupled abstraction would be needed. In contrast, the fixrec package



allows us to handle fixpoint definitions in a way quite more similar
to ordinary Isabelle recursive definitions, providing also with friendly
syntax for mutual recursion.

fun1 :: (a → c) → (b → d) → AType a b → AType c d

fun1 f g k = case k of
ABase x → ABase (f x)
AStep x y → AStep (fun1 f g x) (fun2 f g y)

fun2 :: (a → c) → (b → d) → BType a b → BType c d

fun2 f g k = case k of
BBase x → BBase (g x)
BStep x y → BStep (fun2 f g x) (fun1 f g y)

As an example, the above code translates to HOLCF as follows.

consts

fun1 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →
(′a :: pcpo,′ b :: pcpo) AType → (′c :: pcpo,′ d :: pcpo) AType

fun2 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →
(′a :: pcpo,′ b :: pcpo) BType → (′c :: pcpo,′ d :: pcpo) BType

fixrec fun1 = (LAMf. LAMg. LAMk. case k of
ABase · pX1 => ABase · (f · pX1) |
AStep · pX1 · pX2 =>
AStep · (fun1 · f · g · pX1) · (fun2 · f · g · pX2))

and fun2 = (LAMf. LAMg. LAMk. case k of
BBase · pX1 => BBase · (g · pX1) |
BStep · pX1 · pX2 =>
BStep · (fun2 · f · g · pX1) · (fun1 · f · g · pX2))

The translation take care automatically of the fact that, in contrast with
Haskell, Isabelle requires patterns in case expressions to follow the order
of datatype declarations.

4.3 HOL: Sentences

Non-recursive definitions are treated in an analogous way as in the trans-
lation to HOLCF. Standard lambda-abstraction (%) and function appli-
cation are used here, instead of continuous ones. Partial functions, and
particularly case expressions with incomplete patterns, are not allowed.
The translation of terms (minus recursion and case expressions) may be
summed up as follows.

dx :: ae = xt :: dae
dce = ct

d\x → fe = % xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = ft dae . . . dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe



Recursive definitions set HOL and HOLCF apart. In HOL one has to
pay attention to the distinction between primitive recursive functions
(introduced by the keyword primrec) and generic recursive ones (key-
word recdef ). Termination is guaranteed for each of the former, by the
fact that recursion is based on the datatype structure of one of the pa-
rameters. In contrast, termination is not a trivial matter for the latter.
A strictly decreasing measure needs to be provided, in association with
the parameters of the defined function. This requires a degree of ingenu-
ity that cannot be easily dealt with automatically. For this reason, the
translation to HOL is restricted to primitive recursive functions. Mu-
tual recursion is allowed for under some additional restrictions — more
precisely:

1) all the functions involved are recursive in the first argument;

2) recursive arguments are of the same type in each function.

As an example, the translation of mutually recursive functions of
type a → b, . . . a → d, respectively, introduces a new function of type
a → (b ∗ . . . ∗ d) which is recursively defined, for each case pattern, as
the product of the values correspondingly taken by the original ones.
The following is a concrete example.

fun3 :: AType a b → (a → a) → AType a b

fun3 k f = case k of
ABase a → ABase (f a)
AStep a b → AStep (fun4 a) b

fun4 :: AType a b → AType a b

fun4 k = case k of
AStep x y → AStep (fun3 x (\z → z)) y
ABase x → ABase x

The translation to HOL of these two functions gives the following.

consts

fun3 :: (′a :: type,′ b :: type) AType ⇒ (′a ⇒′ a) ⇒
(′a,′ b) AType

fun4 :: (′a :: type,′ b :: type) AType ⇒ (′a ⇒′ a) ⇒
(′a,′ b) AType

fun3 Xfun4 X :: (′a :: type,′ b :: type) AType ⇒
((′aXX1 :: type ⇒′ aXX1 :: type) ⇒
(′aXX1,′ bXX1) AType)∗
((′aXX2 :: type ⇒′ aXX2 :: type) ⇒
(′aXX2,′ bXX2) AType)



defs

fun3 def : fun3 == %k f. fst ((fun3 Xfun4 X ::
(′a :: type,′ b :: type) AType ⇒ ((′a ⇒′ a)
⇒ (′a,′ b) AType) ∗ ((unit ⇒ unit) ⇒
(unit, unit) AType)) k) f

fun4 def : fun4 == %k f. snd ((fun3 Xfun4 X ::
(′a :: type,′ b :: type) AType ⇒
((unit ⇒ unit) ⇒ (unit, unit) AType)∗
((′a ⇒′ a) ⇒ (′a,′ b) AType)) k) f

primrec

fun3 Xfun4 X (ABase pX1) = (%f. ABase (f pX1),
%f. ABase pX1)

fun3 Xfun4 X (AStep pX1 pX2) =
(%f. AStep (snd (fun3 Xfun4 X pX1) f) pX2,
%f. AStep (fst (fun3 Xfun4 X pX1) f) pX2)

One may note that the type of the recursive function, for each of its
call in the body of non-recursive definitions, is given by instantiations
where the Isabelle unit type is replaced for each type variable which
is not occurring on the right hand-side, i.e. for each variable which is
not constrained by the type of the defined function. This is required by
Isabelle, in order to avoid definitions from which inconsistencies could
be derivable. Other meta-level features are essentially common to both
translation.

4.4 Patterns

Multiple function definitions using top level pattern matching are trans-
lated as definitions based on a single case expression. This syntactical
choice has more to do with HOL than with HOLCF. In fact, multiple
definitions in Isabelle are only allowed with the syntax of recursive ones.
In primitive recursive definitions, HOL allows for patterns only in one
parameter. Therefore, in order to translate definitions having patterns
in more than one, before resorting to a more complex syntax (with
tuples and recdef instead of primrec), it turns out comparatively easier
to internally deal with multiple definitions as with case expressions. An
example follows.

ctl :: Bool → Bool → Bool → Bool
ctl False a False = a
ctl True a False = False
ctl False a True = True
ctl True a True = a

Translation to HOL gives the following.

consts ctl :: bool ⇒ bool ⇒ bool ⇒ bool



defs

ctl def : ctl == %qX1 qX2 qX3. case qX1 of
False ⇒ case qX3 of

False ⇒ qX2
| True ⇒ True

| True ⇒ case qX3 of
| False ⇒ False
True ⇒ qX2

This example cannot be handled by the translation to HOLCF, owing
to the mapping of Boolean values to type tr, which is not a recursive
datatype. The following, where a defined datatype is used instead of
Boolean, gives the closest alternative that can be dealt with.

data TV = F | T
ctlx :: TV → TV → TV → TV
ctlx F a F = a
ctlx T a F = F
ctlx F a T = T
ctlx T a T = a

This translates to HOLCF as follows.

domain TV = F | T

consts ctlx :: TV → TV → TV → TV

defs

ctlx def : ctlx == LAM qX1 qX2 qX3. case qX1 of
F ⇒ case qX3 of

F ⇒ qX2
| T ⇒ T

| T ⇒ case qX3 of
F ⇒ F
| T ⇒ qX2

Support of patterns in definitions and case expressions is more restricted
in Isabelle than in Haskell. Nested patterns are overall disallowed. In
case expressions, the case term is required to be a variable. Both of these
restrictions apply to our translations. A further Isabelle limitation —
sensitiveness to the order of patterns in case expressions — is dealt with
automatically. Similarly, wildcards, not available in Isabelle, are dealt
with and may be used, in case expressions as well as in function definition,
though not in nested position. The translation to HOLCF can also handle
incomplete patters, also not allowed by Isabelle, in function definitions as
well as in case expressions, by using⊥ as default value. As nested patterns
are not covered, guarded expressions and list comprehension are neither;
anyway these can be avoided easily enough, using conditional expressions
and map instead.



4.5 Classes

Conceptually, type classes in Isabelle are quite different from those in
Haskell. The former are associated with sets of axioms, whereas the latter
come with sets of function declarations. Moreover, Isabelle allows only for
classes with a single type parameter. Most importantly, Isabelle does not
allow for type constructor classes. The last limitation is rather serious,
since it makes hard to cope with essential Haskell features such as monads
and the do notation. In alternative to the method proposed in [HMW05],
we would like to get around the obstacle by relying on an extension of
Isabelle based on theory morphism (see section 4.7). The AWE system
[BJL06] is in fact an implementation of such an extension.

Defined classes are translated to Isabelle as classes with empty axioma-
tization. Every class is declared as a subclass of type — also in the case
of HOLCF, in order to allow for instantiation with lifted built-in types,
as well. The translations stay simple and cover only classes with no more
than one type parameter — one could probably do something more using
tuples, but this would surely involve considerable complication dealing
with conditional instantiations.

Instance declarations are translated to corresponding ones in Isabelle.
Isabelle instances in general require proofs that class axioms are satisfied
by the types, but as long as there are no axioms the proofs are trivial
and carried out automatically. Method declarations are translated to
independent function declarations with appropriate class annotation on
type variables. Method definitions associated with instance declarations
are translated to overloaded function definitions, using type annotation.
An example follows.

class ClassA a where

abase :: a → Bool

astep :: a → Bool

instance (ClassA a, ClassA b) ⇒ ClassA (AType a b) where

abase x = case x of
ABase u → True
→ False

The translation of this code to HOLCF gives the following.

axclass ClassA < type

instance AType :: ({pcpo, ClassA}, {pcpo, ClassA}) ClassA

by intro classes

consts
abase :: ′a :: {ClassA, pcpo} → tr
astep :: ′a :: {ClassA, pcpo} → tr
default abase :: ′a :: {ClassA, pcpo} → tr
default astep :: ′a :: {ClassA, pcpo} → tr



defs

AType abase def : abase ::
(′a :: {ClassA, pcpo}, ′b :: {ClassA, pcpo}) AType → tr

== LAMx. case x of
ABase · pX1 ⇒ TT |
AStep · pX2 · pX1 ⇒ FF

AType astep def : astep ::
(′a :: {ClassA, pcpo}, ′b :: {ClassA, pcpo}) AType → tr

== default astep

Translation to HOL, on the other hand, gives the following.

axclass ClassA < type

instance AType :: ({type, ClassA}, {type, ClassA}) ClassA

by intro classes

consts

abase :: ′a :: {ClassA, type} ⇒ bool
astep :: ′a :: {ClassA, type} ⇒ bool
default abase :: ′a :: {ClassA, type} ⇒ bool
default astep :: ′a :: {ClassA, type} ⇒ bool

defs

AType abase def : abase ::
(′a :: {ClassA, type}, ′b :: {ClassA, type}) AType ⇒ bool

== %x. case x of
ABase pX1 ⇒ True
| AStep pX2 pX1 ⇒ False

AType astep def : astep ::
(′a :: {ClassA, type}, ′b :: {ClassA, type}) AType ⇒ bool

== default astep

The additional functions declared for default use in method definition are
close mirrors of an internal feature of the Programatica representation.

In the Programatica internal representation of Haskell, for each function,
information about the class of type parameters is encoded by including in
the internal representation of the function some extra arguments (dictio-
nary parameters) on top of the original ones. This is particularly useful
in the case of overloaded definitions. On the other hand, class informa-
tion in Isabelle can be represented by direct annotation on the argu-
ments. Therefore, the translation eliminates dictionary parameters and
gives function definitions based on their external representation instead.
However, for each definition, our translations gives a function explicitly
annotated with its type, inclusive of class annotation, in order to allow
for overloading (just for the sake of formatting, this type annotation has
been delated in some of the examples shown).



4.6 Equality

Equality is the only built-in class which is covered by the two transla-
tions. Axiomatizations for the associated methods are provided in the
base theories — HsHOLCF and HsHOL, respectively. Both axiomati-
zations are based on the abstract definition of equality and inequality
given in [PJ03].

consts
hEq :: (′a :: Eq) lift → ′a lift → tr
hNEq :: (′a :: Eq) lift → ′a lift → tr

axioms
axEq : ALL x. (hEq · p · q = Def x) =

(hNEq · p · q = Def (∼ x))

The definition of Boolean equality in HsHOLCF is obtained by lifting
HOL equality, so that ⊥ is returned whenever one of the argument is
undefined.

tr hEq def : hEq == fliftbin (%(a :: bool) b. a = b)

All built-in methods for built-in types are defined in a similar way.
In HsHOL equality is axiomatized under the implicit assumption of
restricting to terminating programs.

consts
hEq :: (′a :: Eq) ⇒ ′a ⇒ bool
hNEq :: (′a :: Eq) ⇒ ′a ⇒ bool

axioms
axEq : hEq p q == ∼ hNEq p q

Under that assumption, equality for built-in types can be identified with
HOL equality.

4.7 Monads

Isabelle does not allow for classes of type constructors — hence the prob-
lem in representing monads. We could deal with this problem relying
on an axiomatization of monads that allows for the representation of
monadic types as an axiomatic class, as presented in [Lue05]. Monadic
types should be translated to newly defined types that satisfy monadic
axioms. This would involve defining a theory morphism, as an instan-
tiation of type variables in the theory of monads. We are planning to
rely on AWE [BJL06], an implementation of theory morphism on top of
Isabelle base logic that may be used to extend HOL as well.

5 Conclusion

The following is a list of features that are covered by our translations.

– predefined types: Boolean, Integer.



– predefined type constructors: function, Cartesian product, list.
– declaration of recursive datatype, including mutually recursive ones.
– predefined functions: equality, Boolean operators, connectives, list

constructors, head and tail list functions, arithmetic operators.
– non-recursive functions, including conditional, case and let and ex-

pressions (with restriction related to use of patterns).
– use of incomplete patterns (in HOLCF) and of wildcards in case

expressions.
– total primitive recursive functions (in HOL) and partial recursive

ones (in HOLCF), including mutually recursive ones (with restric-
tions in the HOL case).

– single-parameter class and instance declarations.

The shallow embedding approach makes it possible to get most of the
benefit out of the automation currently available on Isabelle. Further
work might carry an extension to cover P-logic [Kie02], a specification
formalism for Haskell programs that is included in the Programatica
toolset.

References

[ABB+05] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell. Ver-
ifying Haskell programs using constructive type theory. In
ACM-SIGPLAN 05, 2005.

[BJL06] M. Bortin, E. B. Johnsen, and C. Lueth. Structured formal
development in Isabelle. Nordic Journal of Computing, 2006.

[HHJK04] T. Hallgren, J. Hook, M. P. Jones, and D. Kieburtz. An
overview of the Programatica toolset. In HCSS04, 2004.

[HMW05] B. Huffman, J. Matthews, and P. White. Axiomatic con-
structor classes in Isabelle-HOLCF. Research paper, OGI,
2005.

[HT95] S. Hill and S. Thompson. Miranda in Isabelle. In Proceedings
of the first Isabelle users workshop, number 397 in Technical
Report, pages 122–135. University of Cambridge Computer
Laboratory, 1995.

[Kie02] R. Kieburtz. P-logic: property verification for haskell pro-
grams. Technical report, OGI, 2002.

[LP04] J. Longley and R. Pollack. Reasoning about CBV programs
in Isabelle-HOL. In TPHOL 04, number 3223 in LNCS,
pages 201–216. Springer, 2004.

[Lue05] C. Lueth. Modular modelling with monads. In Methods of
Category Theory in Software Engineering. Technische Uni-
versitaet Dresden, 2005.

[MMLW03] T. Mossakowski, C. Maeder, K. Luettich, and S. Woelfl. The
Heterogeneous Tool Set, 2003.

[MNvOS99] O. Mueller, T. Nipkow, D. von Oheimb, and O. Slotosch.
HOLCF = HOL + LCF. Journal of Functional Program-
ming, 1999.

[Mos05] T. Mossakowski. Heterogeneous specification and the het-
erogeneous tool set, Habilitation Thesis, 2005.



[Mos06] T. Mossakowski. Hets user guide. Tutorial, Universitaet
Bremen, 2006.

[Pau94] L. C. Paulson. Isabelle: a generic theorem prover, volume
828. Springer, 1994.

[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[Tho89] S. Thompson. A logic for Miranda. Formal Aspects of Com-
puting, 1, 1989.

[Tho92] S. Thompson. Formulating Haskell. In Functional Program-
ming. Springer, 1992.

[Tho94] S. Thompson. A logic for Miranda, revisited. Formal Aspects
of Computing, 3, 1994.

[Wen05] M. Wenzel. Using axiomatic type classes in Isabelle. Tuto-
rial, TU Muenchen, 2005.

[Win93] G. Winskel. The Formal Semantics of Programming Lan-
guages. MIT Press, 1993.


