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Abstract. We present partial translations of Haskell programs to Is-
abelle that have been implemented as part of the Heterogenous Tool Set.
The the target logic is Isabelle/HOLCF, and the translation is based on
a shallow embedding approach.

1 Introduction

Automating the translation from programming languages to the languagee of
a generic prover may provide useful support for the formal development and
the verification of programs. It has been argued that functional languages can
make the task of proving assertions about programs written in them easier,
owing to the relative simplicity of their semantics [Tho92,Tho94]. The idea
of translating Haskell programs, came to us, more specifically, from an inter-
est in the use of functional languages for the specification of reactive systems.
Haskell is a strongly typed, purely functional language with lazy evaluation,
polymorphic types extended with type constructor classes, and a syntax for side
effects and pseudo-imperative code based on monadic operators [PJ03]. Sev-
eral languages based on Haskell have been proposed for application to robotics
[PHH99,HCNP03]. In such languages, monadic constructors are extensively used
to deal with side-effects. Isabelle is a generic theorem-prover implemented in
SML supporting several logics — in particular, Isabelle/HOL is the implemen-
tation in Isabelle of classical higher-order logic based on simply typed lambda
calculus extended with axiomatic type classes. It provides support for reason-
ing about programming functions, both in terms of rich libraries and efficient
automation. Isabelle/HOLCF [MNvOS99] [Pau94,MNvOS99] is Isabelle/HOL
conservatively extended with the Logic of Computable Functions — a formali-
sation of domain theory.

We have implemented as functions of Hets translations of Haskell to Is-
abelle/HOLCF following an approach based on shallow embedding, mapping
Haskell types to Isabelle ones, therefore taking full advantage of Isabelle built-
in type-checking. Hets [Mos05a,Mos06,MML07] is an Haskell-based application
designed to support heterogeneous specification and the formal development of
programs. It has an interface with Isabelle, and relies on Programatica [HHJK04]
for parsing and static analysis of Haskell programs. Programatica already in-
cludes a translation to Isabelle/HOLCF which, in contrast to ours, is based on
an object-level modelling of the type system [HMW05].



Our translation to Isabelle/HOLCF covers at present Booleans, integers, ba-
sic constructors (function, product, list, maybe), equality, single-parameter type
classes (with some limitations), case and if expressions, let expressions without
patterns, mutually recursive data-types and functions. It keeps into account par-
tiality and laziness by following, for the main lines, the denotational semantics
of lazy evaluation given in [Win93]. There are several limitations: Predulde syn-
tax is covered only partially; list comprension, where expressions and let with
patterns are not covered; further built-in types and type classes are not covered;
imports are not allowed; constructor type classes are not covered at all — and
so for monadic types beyond list and maybe. Of all these limitations, the only
logically deep ones are those related to classes — all the other ones are just a
matter of implementation.

Concerning related work, although there have been translations of func-
tional languages to first-order systems — those to FOL of Miranda
[Tho94,Tho89,HT95] and Haskell [Tho92], both based on large-step operational
semantics; that of Haskell to Agda implementation of Martin-Loef type theory in
[ABB+05] — still, higher-order logic may be quite helpful in order to deal with
features such as currying and polymorphism. Moreover, higher-order approaches
may rely on denotational semantics — as for examples, [HMW05] translating
Haskell to HOLCF, and [LP04] translating ML to HOL — allowing for program
representation closer to specification as well as for proofs comparatively more
abstract and general.

The translation of Haskell to Isabelle/HOLCF proposed in [HMW05] uses
deep embedding to deal with types. Haskell types are translated to terms, relying
on a domain-theoretic modelling of the type system at the object level, allowing
explicitly for a clear semantics, and providing for an implementation that can
capture most features, including type constructor classes. In contrast, we provide
in the case of Isabelle/HOLCF with a translation that follows the lines of a
denotational semantics under the assumption that type constructors and type
application in Haskell can be mapped to corresponding constructors and built-
in application in Isabelle without loss from the point of view of behavioural
equivalence between programs — in particular, translating Haskell datatypes to
Isabelle ones. Our solution gives in general less expressiveness than the deeper
approach — however, when we can get it to deal with cases of interest, it might
make proofs easier.

Section 2 gives some background, section 3 introduces the system, section 4
gives the sublanguages of Haskell that can be translated, in section 5 we define
the two translations.

2 Translation of Types

In Isabelle/HOL types are interpreted as sets (class type); functions are total
and may not be computable. A non-primitive recursive function may require
discharging proof obligations already at the stage of definition — in fact, a spe-
cific relation has to be given for a function to be proved total. In Isabelle/HOLCF



each type is interpreted as a pointed complete partially ordered set (class pcpo)
i.e. a set with a partial order which has suprema of ω-chains and has a bottom.
Isabelle’s formalisation, based on axiomatic type classes [Wen05], makes it pos-
sible to deal with complete partial orders in quite an abstract way. Functions
are generally partial and computability can be expressed in terms of continu-
ity. Recursion can be expressed in terms of least fixed-point operator, and so,
in contrast with Isabelle/HOL, function definition does not depend on proofs.
Nevertheless, proving theorems in Isabelle/HOLCF may turn out to be com-
paratively hard. After being spared the need to discharge proof obligations at
the definition stage, one has to bear with assumptions on function continuity
throughout the proofs. A standard strategy is then to define as much as possi-
ble in Isabelle/HOL, using Isabelle/HOLCF type constructors to lift types only
when this is necessary.

Our translation is defined recursively. It is based on a translation of names
for avoidance of name clashes that is not specified here. We write α′ for both
the recursive translation of item α and the renaming according to the name
translation. The translation of types is given by the following rules:
Types

a =⇒ ′a :: {pcpo}
() =⇒ unit lift
Bool =⇒ bool lift
Integer =⇒ int lift
τ1 → τ2 =⇒ τ ′1 --> τ ′2)
(τ1, τ2) =⇒ (τ ′1lprodτ ′2)
T τ1 . . . τn =⇒ τ ′1 . . . τ ′n T ′

with T either datatype or defined type

Here, we rely on a specific Isabelle theory HsHOLCF included in the Hets
distrubution. It defines the lifted products and lifted function spaces as follows:

defaultsort pcpo

domain (’a,’b) lprod = lpair (lazy lfst :: ’a) (lazy lsnd :: ’b)

domain ’a Lift = Lift (lazy ’a)

types (’a, ’b) "-->" = "(’a -> ’b) Lift" (infixr 0)

constdefs
liftedApp :: "(’a --> ’b) => (’a => ’b)" ("_$$_" [999,1000] 999)

(* application *)
"liftedApp f x == case f of

Lift $ g => g $ x"
constdefs
liftedLam :: "(’a => ’b) => (’a --> ’b)" (binder "Lam " 10)

(* abstraction *)
"liftedLam f == Lift $ (LAM x . f x)"



!!!!!!!!!!!!!!!!1discuss seq etc.

Classes

Eq =⇒ Eq
K =⇒ K ′

Type schemas

({K v} ∪ ctx) ⇒ τ =⇒ (ctx ⇒ τ)′ [(v′ :: s)/(v′ :: (K ′ ∪ s))]
{} ⇒ τ =⇒ τ ′

Haskell type variables are translated to variables of class pcpo. Each type
is associated to a sort in Isabelle, defined by the set of the classes of which
it is member. Built-in types are translated to the lifting of ths corresponding
HOL type. The Isabelle/HOLCF type constructor lift is used to lift types to flat
domains.

The types of Haskell functions and product are translated, respectively,
to Isabelle/HOLCF function spaces and lazy product — i.e. such that
⊥ = (⊥ ∗ ⊥) 6= (⊥ ∗ ′a) 6= (′a ∗ ⊥). Type constructors are translated to corre-
sponding Isabelle/HOLCF ones (notably, parameters precede type constructors
in Isabelle syntax). Maybe is translated to Isabelle/HOLCF-defined maybe (the
disjoint union of the lifted unit type and the lifted domain parameter).



Terms

x :: τ =⇒ x′ :: τ ′

() =⇒ Def ()
True =⇒ TT
False =⇒ FF
&& =⇒ trand
|| =⇒ tror
not =⇒ neg
c =⇒ Def c
t ∈ {+,−, ∗, div,mod,<,>} =⇒ fliftbin t
negate =⇒ flift2 −
[] =⇒ nil
t : ts =⇒ t′##ts′

head =⇒ HD
tail =⇒ TL
== =⇒ hEq
/ = =⇒ hNEq
Just =⇒ return
Nothing =⇒ fail
C =⇒ C ′

f =⇒ f ′

\x → t =⇒ LAM x′. t′

t1 t2 =⇒ t′1 · t′2
(t1, t2) =⇒ (t′1, t′2)
fst =⇒ cfst
snd =⇒ csnd
let (x1 = t1;

. . . ;
xn = tn) in t =⇒ let (x′1 = t′1; . . . ; x′n = t′n) in t′

if t then t1 else t2 =⇒ If t′ then t′1 else t′2 fi
case x of (p1 → t1;

. . . ;
pn → tn) =⇒ case x′ p′1 ⇒ t′1 | . . . | p′n ⇒ t′n

if p′1, . . . , p
′
n 6= is a complete match

case x′ p′1 ⇒ t′1 | . . . | p′n−1 ⇒ t′n−1

| q1 ⇒ t′n | . . . | qk ⇒ t′n
if pn = , with p′1, . . . , p

′
n−1, q1, . . . , qk

complete match
case x′ p′1 ⇒ t′1 | . . . | p′n ⇒ t′n

| q1 ⇒ ⊥ | . . . qk ⇒ ⊥
with p′1, . . . , p

′
n, q1, . . . , qk complete match

Terms of built-in type are translated using Isabelle/HOLCF-defined
lifting function Def. The bottom element ⊥ is used for undefined terms.



Isabelle/HOLCF-defined flift1 :: (′a ⇒′ b :: pcpo) ⇒ (′a lift →′ b) and
flift2 :: (′a ⇒′ b) ⇒ (′a lift →′ b lift) are used to lift operators, as well as the
following, defined in HsHOLCF.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)

fliftbin f == flift1 (λx. flift2 (f x))

Boolean values are translated to values of bool lift (tr in Isabelle/HOLCF) i.e.
TT, FF and ⊥, and Boolean connectives to the corresponding Isabelle/HOLCF
operators. Isabelle/HOLCF-defined If then else fi and case syntax are used to
translate conditional and case expressions, respectively. There are restrictions,
however, on case epressions, due to limitations in the translation of patterns;
in particular, the case term has to be a variable, and only simple patterns are
allowed (no nested ones). On the other hand, Isabelle sensitiveness to the order
of patterns in case expressions is dealt with. Multiple function definitions are
translated as definitions based on case expressions. In function definitions as
well as in case expressions, both wildcards — not available in Isabelle — and
incomplete patterns — not allowed — are dealt with by elimination,⊥ being used
as default value in the latters. Only let expressions without patterns on the left
are dealt with; where expressions, guarded expressions and list comprehension
are not covered.

Lists are translated to the domain seq defined in library IOA.

domain ′a seq = nil | ## (HD :: ′a) (lazy TL :: ′a seq)

Keyword lazy ensures that x ## ⊥ 6= ⊥, allowing for partial sequences as
well as for infinite ones [MNvOS99].

Declarations

class K where (Dec1; . . . ;Decne) =⇒ class K ′ ⊆ pcpo; Dec′1; . . . ; Dec′n
f :: φ =⇒ consts f ′ :: φ′

type τ = τ1 =⇒ type τ = τ ′1
(data φ1 = C11 x1 . . . xi | . . . | C1p y1 . . . yj ;
. . . ;
data φn = Cn1 w1 . . . wh | . . . | C1q z1 . . . zk) =⇒

domain φ′1 = C ′
11 d111 x′1 . . . d11i x′i | . . . | C ′

1p d1p1 y′1 . . . d1pj y′j
and . . .
and φ′n = C ′

n1 dn11 w′
1 . . . dn1h w′

h | . . . | C ′
nq dnq1 z′1 . . . dnqk z′k

where φ1, φn are mutually recursive datatype



Definitions

f x p1 x1 = t1; . . . ; f x pn xn = tn =⇒
(f x = case y of (p1 → (\x1 → t1); . . . ; pn(→ \xn → tn)))′

f x = t =⇒ defs f ′ :: φ′ == LAM x′. t′

with f :: φ not occurring in t
(f1 v1 = t1; . . . ; fn vn = tn) =⇒

fixrec f ′1 :: φ′1 = (LAM v1
′. t′1) and

. . .
and f ′n :: φ′n = (LAM vn

′. t′n)
with f1 :: φ1, . . . , fn :: φn mutually recursive

instance ctx ⇒ KT (T v1 . . . vn) where
(f1 :: τ1 = t1; . . . ; fn :: τn = tn) =⇒

instance
τ ′ :: K ′

T ({pcpo} ∪ {K ′ : (K v1) ∈ ctx}, . . . ,
{pcpo} ∪ {K ′ : (K vn) ∈ ctx})

with proof obligation;
defs f ′1 :: (ctx ⇒ τ1)′ == t′1; . . . ; f ′n :: (ctx ⇒ τn)′ == t′n

Function declarations use Isabelle keyword consts. Datatype declarations in
Isabelle/HOLCF are domain declarations and require explicitly destructors. Mu-
tually recursive datatypes relies on specific Isabelle syntax (keyword and). Order
of declarations is taken care of.

Non-recursive definitions are translated to standard definitions using Isabelle
keyword defs. Recursive definitions rely on Isabelle/HOLCF package fixrec which
provides nice syntax for fixed point definitions, including mutual recursion.
Lambda abstraction is translated as continuous abstraction (LAM ), function
application as continuous application (the dot operator), equivalent to lambda
abstraction (λ) and standard function application, respectively, when all argu-
ments are continuous.

Classes in Isabelle and Haskell are built quite differently. In Haskell, a type
class is associated to a set of function declarations, and it can be interpreted
as the set of types where those functions are defined. In Isabelle, a type class
has a single type parameter, it is associated to a set of axioms in a single type
variable, and can be interpreted as the set of types that satisfy those axioms.

Not all the problems have been solved with respect to arities that may con-
flict in Isabelle, although they correspond to compatible Haskell instantiations.
Moreover, Isabelle does neither allow for multi-parameter classes, nor for type
constructor ones, therefore the same translation method cannot be applied to
them.

Defined single-parameter classes are translated to Isabelle/HOLCF as sub-
classes of pcpo with empty axiomatization. Methods declarations associated with
Haskell classes are translated to independent function declarations with appro-
priate class annotation on type variables. In Isabelle, each instance requires
proofs that class axioms are satisfied by the instantiating type — anyway, as



long as there are no axioms proofs are trivial and proof obligation may be auto-
matically discharged. Method definitions associated with instance declarations
are translated to independent function definitions, using type annotation and
relying on Isabelle overloading.

In the internal representation of Haskell given by Programatica, function
overloading is handled by means of dictionary parameters [Jon93]. This means
that each function has additional parameters for the classes associated to its type
variables. In fact, dictionary parameters are used to decide, for each instantiation
of the function type variables, how to instantiate the methods called in the
function body. On the other hand, overloading in Isabelle is obtained by adding
explicitly type annotation to function definitions — dictionary parameters may
thus be eliminated.

The translation of built-in classes may involve axioms — this is the case
for equality. An Isabelle/HOLCF formalisation, based on the methods speci-
fication in [PJ03], has been given as follows in HsHOLCF (neg is lifted negation).

consts
heq :: ′a → ′a → tr
hneq :: ′a → ′a → tr

axclass Eq < pcpo
eqAx : heq · p · q = neg · (hneq · p · q)

Functions heq and hneq can be defined, for each instantiating type, with the
translation of equality and inequality, respectively. For each instance, a proof
that the definitions satisfy eqAx needs to be given — the translation will simply
print out sorry (a form of ellipsis in Isabelle). The definition of default methods
for built-in types and the associated proofs can be found in HsHOLCF.

2.1 HOL

The translation ωs :: Hs → HOL from programs in Hs to theories in
Isabelle/HOL extended with AWE can be defined with the following set of
rules.

Types
() =⇒ unit
a =⇒ ′a :: {type}
Bool =⇒ boolean
Integer =⇒ int
τ1 → τ2 =⇒ τ ′1 ⇒ τ ′2
(τ1, τ2) =⇒ (τ ′1 ∗ τ ′2)
[τ ] =⇒ τ ′ list
Maybe τ =⇒ τ ′ option
T τ1 . . . τn =⇒ τ ′1 . . . τ ′n T ′

with T either datatype or defined type



Classes

Eq =⇒ Eq
K =⇒ K ′

Type schemas

({K v} ∪ ctx) ⇒ τ =⇒ (ctx ⇒ τ)′ [(v′ :: s)/(v′ :: (K ′ ∪ s))]
{} ⇒ τ =⇒ τ ′

Here we highlight the main differences the translation to Isabelle/HOLCF
and this, semantically rather more approximative one to Isabelle/HOL (there-
after simply HOL). Function type, product and list are used to translate the
corresponding Haskell constructors. Option types are used to translate Maybe.
Haskell datatypes are translated to HOL datatypes. Type variables are of class
type.

Standard lambda-abstraction (λ) and function application are used here,
instead of continuous ones. Non-recursive definitions are treated in an analogous
way as in the translation to Isabelle/HOLCF. However, partial functions and
particularly case expressions with incomplete patterns are not allowed.

In HOL one has to pay attention to the distinction between primitive re-
cursive functions (introduced by the keyword primrec) and generally recursive
ones. Termination is guaranteed for each primitive recursive function by the fact
that recursion is based on the datatype structure of one of the parameters. In
contrast, termination is no trivial matter for recursion in general. A strictly de-
creasing measure needs to be association with the parameters. This cannot be
dealt with automatically in general. Threferore here we restrict translation to
primitive recursive functions.

Mutual primitive recursion is allowed for under additional restrictions —
more precisely, given a set F of functions: 1) all the functions in F are recursive
in the first argument; 2) all recursive arguments in F are of the same type
modulo variable renaming; 3) each type variable occurring in the type of a
function in F already occurs in the type of the first argument. The third
conditions is a way to ensure that we do not end up with type variables which
occurs on the right hand-side but not on the left hand-side of a definition. In
fact, given mutually recursive functions f1, . . . , fn of type A → B1, . . . , A → Bn

after variable renaming, they are translated to projections of a new function of
type A → (B1 ∗ . . . ∗ Bn) which is defined for cases of A with products of the
corresponding values of f1, . . . , fn. The expression nthn t used in the translation
rule is simply an informal abbreviation for the HOL function, defined in terms
of fst and snd, which extracts the n-th projection from a tuple no shorter than n.



Terms

x :: τ =⇒ x′ :: τ ′

() =⇒ ()
True =⇒ True
False =⇒ False
&& =⇒ &
|| =⇒ |
not =⇒ Not
c =⇒ c
t ∈ {+,−, ∗, div,mod,<,>} =⇒ t
negate x =⇒ −x
[] =⇒ []
t : ts =⇒ t′#ts′

head =⇒ hd
tail =⇒ tl
== =⇒ hEq
/ = =⇒ hNEq
Just =⇒ Some
Nothing =⇒ None
return =⇒ return
bind =⇒ mbind
C =⇒ C ′

f =⇒ f ′

\x → t =⇒ λ x′. t′

t1 t2 =⇒ t′1 t′2
(t1, t2) =⇒ (t′1, t′2)
fst =⇒ fst
snd =⇒ snd
let (x1 = t1;

. . . ;
xn = tn) in t =⇒ let (x′1 = t′1; . . . ; x′n = t′n) in t′

if t then t1 else t2 =⇒ if t′ then t′1 else t′2
case x of (p1 → t1;

. . . ;
pn → tn) =⇒ case x′ p′1 ⇒ t′1 | . . . | p′n ⇒ t′n

if p′1, . . . , p
′
n 6= is a complete match

case x′ p′1 ⇒ t′1 | . . . | p′n−1 ⇒ t′n−1

| q1 ⇒ t′n | . . . | qk ⇒ t′n
if pn = , with p′1, . . . , p

′
n−1, q1, . . . , qk

complete match



Declarations

class K where (Dec1; . . . ;Decne) =⇒ class K ′ ⊆ type; Dec′1; . . . ; Dec′n
f :: φ =⇒ consts f ′ :: φ′

type τ = τ1 =⇒ type τ = τ ′1
(data φ1 = C11 x1 . . . xi | . . . | C1p y1 . . . yj ;
. . . ;
data φn = Cn1 w1 . . . wh | . . . | C1q z1 . . . zk) =⇒

datatype φ′1 = C ′
11 x′1 . . . x′i | . . . | C ′

1p y′1 . . . y′j
and . . .
and φ′n = C ′

n1 w′
1 . . . w′

h | . . . | C ′
nq z′1 . . . z′k

where φ1, φn are mutually recursive datatype

Definitions

f x p1 x1 = t1; . . . ; f x pn xn = tn =⇒
(f x = case y of (p1 → (\x1 → t1); . . . ; pn(→ \xn → tn)))′

f x = t =⇒ defs f ′ :: φ′ == λ x′. t′

with f :: φ not occurring in t
f1 y1 x1 = t1; . . . ; fn yn xn = tn =⇒

decl fnew :: (σ1(ctx1) ∪ . . . ∪ σn(ctxn) ⇒
σ1(τ1a) → (σ1(τ1), . . . , σn(τn)))′

primrec fnew sp1 = (λ x1
′. t′1[y

′
1/sp1], . . . , λ xn

′.t′n[y′n/sp1]);
. . . ;
fnew spk = (λ x1

′. t′1[y
′
1/spk], . . . , λ xn

′. t′n[y′n/spk]);
defs f1 x == nth1 (fnew x); . . . ; fn x == nthn (fnew x)
with f1 :: (ctx1 ⇒ τ1a → τ1), . . . , fn :: (ctxn ⇒ τna → τn)
mutually recursive

instance ctx ⇒ KT (T v1 . . . vn) where
(f1 :: τ1 = t1; . . . ; fn :: τn = tn) =⇒

instance
τ ′ :: K ′

T ({pcpo} ∪ {K ′ : (K v1) ∈ ctx},
. . . , {pcpo} ∪ {K ′ : (K vn) ∈ ctx})

with proof obligation;
defs f ′1 :: (ctx ⇒ τ1)′ == t′1; . . . ; f ′n :: (ctx ⇒ τn)′ == t′n

instance Monad τ where (defeta; defbind) =⇒
defs def ′eta; def ′bind;
t instantiate Monad mapping m τ ′

with construction and proof obligations
where m′

τ is defined as theory morphism associating
MonadType.M, MonadOpEta.eta, MonadOpBind.bind
to tau′, def ′eta, def ′bind respectively;

Type classes are translated to subclasses of type. An axiomatisation of Haskell
equality for total functions can be found in HsHOL.



consts
heq :: ′a → ′a → bool
hneq :: ′a → ′a → bool

axclass Eq < type

eqAx : heq p q = Not (hneq p q)

Given the restriction to total functions, equality on built-in types can be
defined as HOL equality.

3 Semantics (for HOLCF)

Denotational semantics con be given as basis for the translation to Is-
abelle/HOLCF. Essentially, the claim here is that the expressions on the left
hand-side of the following tables represent the denotational meaning of the
Haskell expressions on the right hand-side, as well as of the Isabelle/HOLCF
expressions to which they are translated. The language on the left hand-side is
still based on Isabelle/HOLCF where type have been extended with abstraction
(Λ) and fixed point (µ) in order to represent the denotational meaning of
domain declarations.

dae = ′a :: pcpo
d()e = unit lift
dBoole = bool lift
dIntegere = int lift
d→e = →
d(, )e = ∗
d[]e = seq
dMaybee = maybe
dT1 T2e = dT1e dT2e
dTCie = let F = µ (X1 ∗ . . . ∗Xk).

((Λ v11, . . . , v1m. dτ11e+ . . . + dτ1pe), . . . ,
(Λ vk1, . . . , vkn. . . . , dτk1e+ . . . + dτkqe))[X1/TC1, . . . , Xk/TCk]

in nthi(F )
with 0 < i ≤ k, when data TC1 v11 . . . v1m = C11 :: τ11| . . . |C1p :: τ1p;

. . . ; data TCk vk1 . . . vkn = Ck1 :: τk1| . . . |Ckq :: τkq

are mutually recursive declarations

The representation of term denotation is similar to what we get from
the translation, except that for functions we give the representation of the
meaning of fixrec definitions (FIX is the Isabelle/HOLCF fixed point operator).



dx :: ae = x′ :: dae
dce = c′

d\x → fe = LAM xt. dfe
d(a, b)e = (dae, dbe)
dt1 t2e = dt1e · dt2e
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe
dfie = let g = FIX (x1, . . . , xn). (dt1e, . . . , dtne[f1/x1, . . . , fn/xn]

in nthi(g)
with 0 < i ≤ n, where f1 = t1, fn = tn are mutually recursive definitions

4 Monads with AWE

A monad is a type constructor with two operations that can be specified ax-
iomatically — eta (injective) and bind (associative, with eta as left and right
unit) [Mog89]. Isabelle does not have type constructor classes, therefore monads
cannot be translated directly. The indirect solution that we are pursuing, is to
translate monadic types as types that satisfy the monadic axioms. This solution
can be expressed in terms of theory morphisms — maps between theories, asso-
ciating signatures to signatures and axioms to theorems in ways that preserve
operations and arities, entailing the definition of maps between theorems. The-
ory morphisms allow for theorems to be moved between theories by translating
their proof terms, making it possible to implement parametrisation at the the-
ory level (see [BJL06] for details). A parameterised theory Th has a sub-theory
ThP which is the parameter — this may contain axioms, constants and type
declarations. Building a theory morphism from ThP to a theory I provides the
instantiation of the parameter with I, and makes it possible to translate the
proofs made in the abstract setting of Th to the concrete setting of I — the
result being an extension of I. AWE is an extension of Isabelle that can assist
in the construction of theory morphisms [BJL06].

A notion of monad [BJL07] can be built in AWE by defining, on an abstract
level, a hierarchy of theories culminating in Monad, based on the declaration of
a unary type constructor M (in MonadType) with the two monad operations
(contained in MonadOpEta and MonadOpBind, respectively) and the relevant
axioms (in MonadAxms). To show that a specific type constructor forms a
monad, we have to construct a theory morphism from MonadAxms to the
specific theory; this involves giving specific definitions of the operators, as well
as discharging proof obligations associated with specific instances of the axioms.
The following gives an example.

data LS a = N | C a (LS a)



instance Monad LS where

return x = C x N
x >>= f = case x of

N → N
C a b → cnc (f a) (b >>= f)

cnc :: LS a → LS a → LS a

cnc x y = case x of
N → y
C w z → cnc z (C w y)

These definitions are plainly translated to HOL, as follows. Note that these are
not overloaded definitions.

datatype ′a LS = N | C ′a (′a LS)
consts

return LS :: ′a ⇒′ a LS
mbind LS :: ′a LS ⇒ (′a ⇒ ′b LS) ⇒ ′b LS
cnc :: ′a LS ⇒ ′a LS ⇒ ′a LS

defs

return LS def : return LS :: (′a LS ⇒′ a) == λx. C x N

primrec

mbind LS N = λf. N
mbind LS (C pX1 pX2) = λf. cnc (f pX1) (mbind LS pX2 f)

primrec
cnc N = λb. b
cnc (C pX1 pX2) = λb. cnc pX2 (C pX1 b)

In order to build up the instantiation of LS as a monad, here it is defined the
morphism m LS from MonadType to the instantiating theory Tx, by associating
M to LS.

thymorph m LS : MonadType −→ Tx

maps [(′a MonadType.M 7→ ′a Tx.LS)]
renames : [(MonadOpEta.eta 7→ return LS), (MonadOpBind.bind 7→ mbind LS)]

Renaming is used in order to avoid name clashes in case of more than one
monads — here again, note the difference with overloading. Morphism m LS is
then used to instantiate the parameterised theory MonadOps.

t instantiate MonadOps mapping m LS



This instantiation gives the declaration of the instantiated methods, which may
now be defined.

defs
LS eta def : LS eta == return LS
LS bind def : LS bind == mbind LS

In order to construct a mapping from MonadAxms to Tx, the user needs to prove
the monad axioms as HOL lemmas (in this case, by straightforward simplifica-
tion). The translation will print out sorry instead.

lemma LS lunit : LS bind (LS eta x) t = t x
lemma LS runit : LS bind (t :: ′a LS) LS eta = t
lemma LS assoc : LS bind (LS bind (s :: ′a LS) t) u =

LS bind s (λx. LS bind (t x) u)
lemma LS eta inj : LS eta x = LS eta y =⇒ x = y

Now, the morphism from MonadAxms to Tx can be built, and then used to
instantiate Monad. This gives automatically access to the theorems proven in
Monad and, modulo renaming, the monadic syntax which is defined there.

thymorph mon LS : MonadAxms −→ Tx

maps [(′a MonadType.M 7→ ′a Tx.LS)]
[(MonadOpEta.eta 7→ Tx.LS eta),
(MonadOpBind.bind 7→ Tx.LS bind)]

t instantiate Monad mapping mon LS
renames : [. . .]

The Monad theory allows for the characterisation of single parameter operators.
In order to cover other monadic operators, a possibility is to build similar theories
for type constructors of fixed arity. An approach altogether similar to the one
shown for HOL could be used, in principle, for Isabelle/HOLCF as well.

5 Conclusion and future work

Isabelle does not allow for type constructor classes, therefore there is hardly
a way shallow embedding of Haskell types may extend to cover them. This
limitation is particularly acute with respect to monads and do notation. The
problem is brilliantly avoided in [HMW05] by resorting to a deeper modelling of
types. operator.

The main advantage of shallow embedding is to get as much as possible out
of the automation currently available in Isabelle, especially with respect to type
checking. Isabelle/HOLCF in particular provides with an expressive semantics
covering lazy evaluation, as well as with a smart syntax — also thanks to the
fixrec package. The main disadvantage lies with lack of type constructor classes.



Anyway, it is possible to get around the obstacle, at least partially, by relying
on an axiomatic characterisation of monads and on a proof-reuse strategy that
actually minimises the need for interactive proofs.

Future work should use this framework for proving properties of Haskell
programs. For monadic programs, we are also planning to use the monad-
based dynamic Hoare and dynamic logic that already have been for-
malised in Isabelle [Wal05]. Our translation tool from Haskell to Isabelle
is part of the Heterogeneous Tool Set Hets and can be downloaded from
http://www.dfki.de/sks/hets. More details about the translations can be
found in [TLMM07].
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