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Abstract. We present partial translations of Haskell programs to Is-
abelle that have been implemented as part of the Heterogenous Tool Set.
The the target logic is Isabelle/HOLCF, and the translation is based on
a shallow embedding approach.

1 Introduction

Automating the translation from programming languages to the languagee of
a generic prover may provide useful support for the formal development and
the verification of programs. It has been argued that functional languages can
make the task of proving assertions about programs written in them easier,
owing to the relative simplicity of their semantics [Tho92,Tho94]. The idea
of translating Haskell programs, came to us, more specifically, from an inter-
est in the use of functional languages for the specification of reactive systems.
Haskell is a strongly typed, purely functional language with lazy evaluation,
polymorphic types extended with type constructor classes, and a syntax for side
effects and pseudo-imperative code based on monadic operators [PJ03]. Sev-
eral languages based on Haskell have been proposed for application to robotics
[PHH99,HCNP03]. In such languages, monadic constructors are extensively used
to deal with side-effects. Isabelle is a generic theorem-prover implemented in
SML supporting several logics — in particular, Isabelle/HOL is the implemen-
tation in Isabelle of classical higher-order logic based on simply typed lambda
calculus extended with axiomatic type classes. It provides support for reason-
ing about programming functions, both in terms of rich libraries and efficient
automation. Isabelle/HOLCF [MNvOS99] [Pau94,MNvOS99] is Isabelle/HOL
conservatively extended with the Logic of Computable Functions — a formali-
sation of domain theory.

We have implemented as functions of Hets translations of Haskell to Is-
abelle/HOLCF following an approach based on shallow embedding, mapping
Haskell types to Isabelle ones, therefore taking full advantage of Isabelle built-
in type-checking. Hets [Mos05,Mos06,MML07] is an Haskell-based application
designed to support heterogeneous specification and the formal development of
programs. It has an interface with Isabelle, and relies on Programatica [HHJK04]
for parsing and static analysis of Haskell programs. Programatica already in-
cludes a translation to Isabelle/HOLCF which, in contrast to ours, is based on
an object-level modelling of the type system [HMW05].



The paper is organised as follows: Section 2 discusses the semantic back-
ground of the translation, while the subsequent sections are devoted to the
translation of types, datatypes, classes and function definitions, respectively.
Sect. 7 shows some example proofs, and Sect. 8 concludes the paper.

2 Semantic Background of the Translation

We firstly describe the subset of Haskell that we cover. Our translation to Is-
abelle/HOLCF covers at present Booleans, integers, basic constructors (func-
tion, product, list, maybe), equality, single-parameter type classes (with some
limitations), case and if expressions, let expressions without patterns, mutually
recursive data-types and functions. It keeps into account partiality and laziness
by following, for the main lines, the denotational semantics of lazy evaluation
given in [Win93]. There are several limitations: Prelude syntax is covered only
partially; list comprension, where expressions and let with patterns are not cov-
ered; further built-in types and type classes are not covered; imports are not
allowed; constructor type classes are not covered at all — and so for monadic
types beyond list and maybe. Of all these limitations, the only logically deep
ones are those related to classes — all the other ones are just a matter of imple-
mentation.

For the translation, we have followed the informal description of the op-
erational semantics given in the Haskell report [PJ03], and also consulted the
complete static semantics for Haskell 98 [Fax02], as well as the (fragmentary)
dynamic semantics [HH92]. However, it should be noted that there is no deno-
tational semantics of Haskell! This also has been confirmed in the answers to a
query that one of the authors has sent to the Haskell mailing list. There is a
static semantics for Haskell Hence, our translation to Isabelle/HOLCF can be
seen as the first denotational semantics given to a large subset of Haskell 98. This
also means that there is no notion of correctness of this translation, because it
just defines the denotational semantics. Of course, an interesting question is the
coincidence of denotational and operational semantics. However, this is beyond
the scope of the paper.

3 Translation of Types

In Isabelle/HOL types are interpreted as sets (class type); functions are total
and may not be computable. A non-primitive recursive function may require
discharging proof obligations already at the stage of definition — in fact, a spe-
cific relation has to be given for a function to be proved total. In Isabelle/HOLCF
each type is interpreted as a pointed complete partially ordered set (class pcpo)
i.e. a set with a partial order which has suprema of ω-chains and has a bottom.
Isabelle’s formalisation, based on axiomatic type classes [Wen05], makes it pos-
sible to deal with complete partial orders in quite an abstract way. Functions
are generally partial and computability can be expressed in terms of continu-
ity. Recursion can be expressed in terms of least fixed-point operator, and so,



in contrast with Isabelle/HOL, function definition does not depend on proofs.
Nevertheless, proving theorems in Isabelle/HOLCF may turn out to be com-
paratively hard. After being spared the need to discharge proof obligations at
the definition stage, one has to bear with assumptions on function continuity
throughout the proofs. A standard strategy is then to define as much as possi-
ble in Isabelle/HOL, using Isabelle/HOLCF type constructors to lift types only
when this is necessary.

The provision of pcpos, domains and continuous functions by Is-
abelle/HOLCF eases the translation of Haskell types and functions a lot. How-
ever, special care is needed when trying to understand the Haskell semantics. If
one reads the section of the Haskell report dealing with types and classes, one
could come to the conclusion that a function space in Haskell can be mapped
to the space of the continuous functions in Isabelle/HOLCF — this would cor-
respond to a purely lazy language. However, Haskell is a mixed eager and lazy
language, and it provides a function seq that enforces eager evaluation. This
function is introduced in part 6 of the Haskell report, “Predefined Types and
Classes”, in section 6.2. We quote from there:

However, the provision of seq has important semantic consequences, be-
cause it is available at every type. As a consequence, ⊥ is not the same
as λx → ⊥, since seq can be used to distinguish them.

In order to enforce this distinction, each function space needs to be lifted. The
same holds for products. We define these liftings in a specific Isabelle theory
HsHOLCF (included in the Hets distrubution) as follows:

defaultsort pcpo

domain (’a,’b) lprod = lpair (lazy lfst :: ’a) (lazy lsnd :: ’b)

domain ’a Lift = Lift (lazy ’a)

types (’a, ’b) "-->" = "(’a -> ’b) Lift" (infixr 0)

constdefs
liftedApp :: "(’a --> ’b) => (’a => ’b)" ("_$$_" [999,1000] 999)

(* application *)
"liftedApp f x == case f of

Lift $ g => g $ x"
constdefs
liftedLam :: "(’a => ’b) => (’a --> ’b)" (binder "Lam " 10)

(* abstraction *)
"liftedLam f == Lift $ (LAM x . f x)"

Our translation of Haskell types to Isabelle types is defined recursively. It
is based on a translation of names for avoidance of name clashes that is not
specified here. We write α′ for both the recursive translation of item α and the



renaming according to the name translation. The translation of types is given
by the following rules:
Types

a =⇒ ′a :: {pcpo}
() =⇒ unit lift
Bool =⇒ bool lift
Integer =⇒ int lift
τ1 → τ2 =⇒ τ ′

1 --> τ ′
2)

(τ1, τ2) =⇒ (τ ′
1 lprod τ ′

2)
[τ ] =⇒ τ ′ llist
T τ1 . . . τn =⇒ τ ′

1 . . . τ ′
n T ′

with T either datatype or defined type

Built-in types are translated to the lifting of ths corresponding HOL type.
The Isabelle/HOLCF type constructor lift is used to lift types to flat domains.
The type constructor llist is dicussed in the next section.

4 Translation of Datatypes

As explained in the Haskell report [PJ03], section 4.2.3, the following four Haskell
declarations

data D1 = D1 Int
data D2 = D2 !Int
type S = Int
newtype N = N Int

have four different semantics. Indeed, the correct translation to Is-
abelle/HOLCF is as follows:

domain D1 = D1 (lazy D1_1::"Int \mathit{lift}")
domain D2 = D2 (D2_1::"Int \mathit{lift}")
types S = "Int \mathit{lift}"
pcpodef N = "{x:: Int \mathit{lift} . True}"
by auto

In Isabelle/HOLCF, the keyword domain defines a (possibly recursive) domain
as solution of the corresponding domain equation. The keyword lazy ensures that
the constructor D1 is non-strict, i.e. D1 ⊥ 6= ⊥. The keyword pcpodef can be
used to define sub-pcpos of existing pcpos; here, we use it just to introduce an
isomorphic copy of an existing pcpo — this is the semantic of Haskell newtype
definitions.

Lists are translated to the domain llist, defined as follows in our prelude
theory HsHOLCF :

domain ′a llist = nil | ## (lazy HD :: ′a) (lazy TL :: ′a llist)



allowing for partial list as well as for infinite ones [MNvOS99].

The general scheme for translation of mutually recursive lazy Haskell
datatypes to Isabelle/HOLCF domains is as follows:

data φn = Cn1 w1 . . . wh | . . . | C1q z1 . . . zk =⇒
domain φ′

1 = C ′
11 (lazy d111 :: x′

1) . . . (lazy d11i :: x′
i) |

. . . |
C ′

1p (lazy d1p1 :: y′
1) . . . (lazy d1pj :: y′

j)
and . . .
and φ′

n = C ′
n1 (lazy dn11 :: w′

1) . . . (lazy dn1h :: w′
h) |

. . . |
C ′

nq (lazy dnq1 :: z′
1) . . . (lazy dnqk :: z′

k)

Here, the dnqk are the selectors. Mutually recursive datatypes relies on specific
Isabelle syntax (keyword and). Order of declarations is taken care of. In case of
strict arguments (indicated with ! in Haskell), the keyword lazy is omitted.

The translation scheme for type synonyms simply is

type τ = τ1 =⇒ types τ = τ ′
1

5 Translation of Kinds and Type Classes

Type classes in Isabelle and Haskell associate a set of functions to a type class
identifier (these are also called the methods of the class). In Isabelle, type classes
are typically further specified using a set of axioms; for example, the class
linorder of total orders is specified using the usual total order axioms. Of course,
such axiomatizations are not possible in Haskell. Indeed, in Haskell, there is no
check that the class Ord actually consists of total orders only, and hence it would
be inappropriate to translate it to linorder in Isabelle. Instead, we translate to
a newly declared Isabelle class Ord. The only thing that we assume is that it
is a subclass of pcpo, because all Haskell types are translated to pcpos. Hence,
tpye classes are translated to Isabelle/HOLCF as subclasses of pcpo with empty
axiomatization. Methods declarations associated with Haskell classes are trans-
lated to independent function declarations with appropriate class annotation on
type variables.

Class instance declarations declare that a particular type belongs to a class.
In Isabelle, instance declarations generate proof obligations, namely that the
methods for the type at hand indeed satisfy the axioms of the class. Since our
translations only generates classes without axioms (beyond those of pcpo), proofs
are trivial and proof obligation may be automatically discharged.

A Haskell class instance declaration that declares type T to belong to class
C may define the behaviour of the class methods for T . The same is possible
with normal Isabelle constant definitions, if the type of the constant (function)
is specialised to T in the definition. With this, we avoid an explicit handling of
dictionaries, as described in the static semantics of Haskell [Fax02].



A restriction of Isabelle is that it does neither allow for multi-parameter
classes, nor for type constructor ones. Therefore, the same restrictions apply to
our translation.
Classes

K =⇒ K ′

Type schemas

({K v} ∪ ctx) ⇒ τ =⇒ (ctx ⇒ τ)′ [(v′ :: s)/(v′ :: (K ′ ∪ s))]
{} ⇒ τ =⇒ τ ′

Haskell type variables are translated to variables of class pcpo. Each type is
associated to a sort in Isabelle (in Haskell, the same concept is called “kind”),
defined by the set of the classes of which it is member.

Class declarations

class K where (Dec1; . . . ;Decne) =⇒ class K ′ ⊆ pcpo; Dec′
1; . . . ; Dec′

n

Class instance definitions

instance ctx ⇒ KT (T v1 . . . vn) where
(f1 :: τ1 = t1; . . . ; fn :: τn = tn) =⇒

instance
τ ′ :: K ′

T ({pcpo} ∪ {K ′ : (K v1) ∈ ctx}, . . . ,
{pcpo} ∪ {K ′ : (K vn) ∈ ctx})

with proof obligation;
defs f ′

1 :: (ctx ⇒ τ1)′ == t′1; . . . ; f ′
n :: (ctx ⇒ τn)′ == t′n

6 Translation of Function Definitions and Terms

Terms of built-in type are translated using Isabelle/HOLCF-defined lift-
ing function Def. The bottom element ⊥ is used for undefined terms.
Isabelle/HOLCF-defined flift1 :: (′a ⇒′ b :: pcpo) ⇒ (′a lift →′ b) and
flift2 :: (′a ⇒′ b) ⇒ (′a lift →′ b lift) are used to lift operators, as well as the
following, defined in HsHOLCF.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)
fliftbin f == flift1 (λx. flift2 (f x))

Boolean values are translated to values of bool lift (tr in Isabelle/HOLCF) i.e.
TT, FF and ⊥, and Boolean connectives to the corresponding Isabelle/HOLCF
operators. Isabelle/HOLCF-defined If then else fi and case syntax are used to
translate conditional and case expressions, respectively. There are restrictions,



however, on case epressions, due to limitations in the translation of patterns;
in particular, only simple patterns are allowed (no nested ones). On the other
hand, Isabelle sensitiveness to the order of patterns in case expressions is dealt
with. Multiple function definitions are translated as definitions based on case
expressions. In function definitions as well as in case expressions, both wildcards
— not available in Isabelle — and incomplete patterns — not allowed — are
dealt with by elimination, ⊥ being used as default value in the latters. Only
let expressions without patterns on the left are dealt with; where expressions,
guarded expressions and list comprehension are not covered.

f :: φ =⇒ consts f ′ :: φ′

f x p1 x1 = t1; . . . ; f x pn xn = tn =⇒
(f x = case y of (p1 → (\x1 → t1); . . . ; pn(→ \xn → tn)))′

f x = t =⇒ defs f ′ :: φ′ == Lam x′. t′

with f :: φ not occurring in t
(f1 v1 = t1; . . . ; fn vn = tn) =⇒

fixrec f ′
1 :: φ′

1 = (Lam v1
′. t′1) and

. . .
and f ′

n :: φ′
n = (Lam vn

′. t′n)
with f1 :: φ1, . . . , fn :: φn mutually recursive

Function declarations use Isabelle keyword consts. Non-recursive definitions
are translated to standard definitions using Isabelle keyword defs. Recursive
definitions rely on Isabelle/HOLCF package fixrec which provides nice syntax
for fixed point definitions, including mutual recursion. Lambda abstraction is
translated as continuous abstraction for lifted function spaces (Lam), function
application as continuous application (the $$ operator), see Sect. 3 above.

7 Example Proofs

8 Conclusion and Related Work

We provide a shallow embedding of Haskell to Isabelle/HOLCF, which can be
used for proving properties of Haskell programs, but also is the first denotational
semantics that has been given to Haskell.

The main advantage of our shallow approach is to get as much as possible out
of the automation currently available in Isabelle, especially with respect to type
checking. Isabelle/HOLCF in particular provides with an expressive semantics
covering lazy evaluation, as well as with a smart syntax — also thanks to the
fixrec package. It is interesting to note that Haskell functions and product types
have to be lifted due to the mixture of eager and lazy evaluation that Haskell
exhibits due to the presence of the seq function. Type classes in Haskell are
similar enough to Isabelle’s type classes such that explicit handling of dictionaries
can be avoided.



The main disadvantage of our approach lies with lack of type constructor
classes. Anyway, it is possible to get around the obstacle, at least partially, by
relying on an axiomatic characterisation of monads and on a proof-reuse strategy
that actually minimises the need for interactive proofs.

Concerning related work, although there have been translations of func-
tional languages to first-order systems — those to FOL of Miranda
[Tho94,Tho89,HT95] and Haskell [Tho92], both based on large-step operational
semantics; that of Haskell to Agda implementation of Martin-Loef type theory in
[ABB+05] — still, higher-order logic may be quite helpful in order to deal with
features such as currying and polymorphism. Moreover, higher-order approaches
may rely on denotational semantics — as for examples, [HMW05] translating
Haskell to HOLCF, and [LP04] translating ML to HOL — allowing for program
representation closer to specification as well as for proofs comparatively more
abstract and general.

The translation of Haskell to Isabelle/HOLCF proposed in [HMW05] uses
deep embedding to deal with types. Haskell types are translated to terms, relying
on a domain-theoretic modelling of the type system at the object level, allowing
explicitly for a clear semantics, and providing for an implementation that can
capture most features, including type constructor classes. In contrast, we provide
in the case of Isabelle/HOLCF with a translation that follows the lines of a
denotational semantics under the assumption that type constructors and type
application in Haskell can be mapped to corresponding constructors and built-
in application in Isabelle without loss from the point of view of behavioural
equivalence between programs — in particular, translating Haskell datatypes to
Isabelle ones. Our solution gives in general less expressiveness than the deeper
approach — however, when we can get it to deal with cases of interest, it might
make proofs easier.

operator.
Future work should use this framework for proving properties of Haskell pro-

grams. Currently Hets already provides some experimental translation of con-
structor classes and monads, also covering do notation, using theory morphisms
as provided by the package AWE [BJL06]. However, there are mainly syntactic
problems with name clashes that currently prevent a proper integration with
Isabelle/HOLCF. These problems should be solved in the near future.

For monadic programs, we are also planning to use the monad-based dynamic
Hoare and dynamic logic that already have been formalised in Isabelle [Wal05].
Our translation tool from Haskell to Isabelle is part of the Heterogeneous Tool
Set Hets and can be downloaded from http://www.dfki.de/sks/hets. More
details about the translations can be found in [TLMM07].
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