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Abstract. We present partial translations of Haskell programs to Is-
abelle that have been implemented as part of the Heterogenous Tool Set.
The the target logic is Isabelle/HOLCF, and the translation is based on
a shallow embedding approach.

1 Introduction

Automating the translation from programming languages to the languagee of
a generic prover may provide useful support for the formal development and
the verification of programs. It has been argued that functional languages can
make the task of proving assertions about programs written in them easier,
owing to the relative simplicity of their semantics [Tho92,Tho94]. The idea
of translating Haskell programs, came to us, more specifically, from an inter-
est in the use of functional languages for the specification of reactive systems.
Haskell is a strongly typed, purely functional language with lazy evaluation,
polymorphic types extended with type constructor classes, and a syntax for side
effects and pseudo-imperative code based on monadic operators [PJ03]. Sev-
eral languages based on Haskell have been proposed for application to robotics
[PHH99,HCNP03]. In such languages, monadic constructors are extensively used
to deal with side-effects. Isabelle is a generic theorem-prover implemented in
SML supporting several logics — in particular, Isabelle/HOL is the implemen-
tation in Isabelle of classical higher-order logic based on simply typed lambda
calculus extended with axiomatic type classes. It provides support for reason-
ing about programming functions, both in terms of rich libraries and efficient
automation. Isabelle/HOLCF [MNvOS99] [Pau94,MNvOS99] is Isabelle/HOL
conservatively extended with the Logic of Computable Functions — a formali-
sation of domain theory.

We have implemented as functions of Hets translations of Haskell to Is-
abelle/HOLCF following an approach based on shallow embedding, mapping
Haskell types to Isabelle ones, therefore taking full advantage of Isabelle built-
in type-checking. Hets [Mos05a,Mos06,MML07] is an Haskell-based application
designed to support heterogeneous specification and the formal development of
programs. It has an interface with Isabelle, and relies on Programatica [HHJK04]
for parsing and static analysis of Haskell programs. Programatica already in-
cludes a translation to Isabelle/HOLCF which, in contrast to ours, is based on
an object-level modelling of the type system [HMW05].



The paper is organised as follows: Section 2 discusses the semantic back-
ground of the translation, while the subsequent sections are devoted to the
translation of types, datatypes, classes and function definitions, respectively.

2 Semantic Background of the Translation

We firstly describe the subset of Haskell that we cover. Our translation to Is-
abelle/HOLCF covers at present Booleans, integers, basic constructors (func-
tion, product, list, maybe), equality, single-parameter type classes (with some
limitations), case and if expressions, let expressions without patterns, mutually
recursive data-types and functions. It keeps into account partiality and laziness
by following, for the main lines, the denotational semantics of lazy evaluation
given in [Win93]. There are several limitations: Predulde syntax is covered only
partially; list comprension, where expressions and let with patterns are not cov-
ered; further built-in types and type classes are not covered; imports are not
allowed; constructor type classes are not covered at all — and so for monadic
types beyond list and maybe. Of all these limitations, the only logically deep
ones are those related to classes — all the other ones are just a matter of imple-
mentation.

For the translation, we have followed the informal description of the opera-
tional semantics given in the Haskell report [PJ03]. However, it should be noted
that there is no denotational semantics of Haskell! This also has been confirmed
in the answers to a query that one of the authors has sent to the Haskell mailing
list. Hence, our translation to Isabelle/HOLCF can be seen as the first deno-
tational semantics given to a large subset of Haskell 98. This also means that
there is no notion of correctness of this translation, because it just defines the
denotational semantics. Of course, an interesting question is the coincidence of
denotational and operational semantics. However, this is beyond the scope of
the paper.

3 Translation of Types

In Isabelle/HOL types are interpreted as sets (class type); functions are total
and may not be computable. A non-primitive recursive function may require
discharging proof obligations already at the stage of definition — in fact, a spe-
cific relation has to be given for a function to be proved total. In Isabelle/HOLCF
each type is interpreted as a pointed complete partially ordered set (class pcpo)
i.e. a set with a partial order which has suprema of ω-chains and has a bottom.
Isabelle’s formalisation, based on axiomatic type classes [Wen05], makes it pos-
sible to deal with complete partial orders in quite an abstract way. Functions
are generally partial and computability can be expressed in terms of continu-
ity. Recursion can be expressed in terms of least fixed-point operator, and so,
in contrast with Isabelle/HOL, function definition does not depend on proofs.
Nevertheless, proving theorems in Isabelle/HOLCF may turn out to be com-
paratively hard. After being spared the need to discharge proof obligations at



the definition stage, one has to bear with assumptions on function continuity
throughout the proofs. A standard strategy is then to define as much as possi-
ble in Isabelle/HOL, using Isabelle/HOLCF type constructors to lift types only
when this is necessary.

The provision of pcpos, domains and continuous functions by Is-
abelle/HOLCF eases the translation of Haskell types and functions a lot. How-
ever, special care is needed when trying to understand the Haskell semantics. If
one reads the section of the Haskell report dealing with types and classes, one
could come to the conclusion that a function space in Haskell can be mapped
to the space of the continuous functions in Isabelle/HOLCF — this would cor-
respond to a purely lazy language. However, Haskell is a mixed eager and lazy
language, and it provides a function seq that enforces eager evaluation. This
function is introduced in part 6 of the Haskell report, “Predefined Types and
Classes”, in section 6.2. We quote from there:

However, the provision of seq has important semantic consequences, be-
cause it is available at every type. As a consequence, ⊥ is not the same
as λx → ⊥, since seq can be used to distinguish them.

In order to enforce this distinction, each function space needs to be lifted. The
same holds for products. We define these liftings in a specific Isabelle theory
HsHOLCF (included in the Hets distrubution) as follows:

defaultsort pcpo

domain (’a,’b) lprod = lpair (lazy lfst :: ’a) (lazy lsnd :: ’b)

domain ’a Lift = Lift (lazy ’a)

types (’a, ’b) "-->" = "(’a -> ’b) Lift" (infixr 0)

constdefs
liftedApp :: "(’a --> ’b) => (’a => ’b)" ("_$$_" [999,1000] 999)

(* application *)
"liftedApp f x == case f of

Lift $ g => g $ x"
constdefs
liftedLam :: "(’a => ’b) => (’a --> ’b)" (binder "Lam " 10)

(* abstraction *)
"liftedLam f == Lift $ (LAM x . f x)"

Our translation of Haskell types to Isabelle types is defined recursively. It
is based on a translation of names for avoidance of name clashes that is not
specified here. We write α′ for both the recursive translation of item α and the
renaming according to the name translation. The translation of types is given
by the following rules:



Types
a =⇒ ′a :: {pcpo}
() =⇒ unit lift
Bool =⇒ bool lift
Integer =⇒ int lift
τ1 → τ2 =⇒ τ ′

1 --> τ ′
2)

(τ1, τ2) =⇒ (τ ′
1 lprod τ ′

2)
[τ ] =⇒ τ ′ llist
T τ1 . . . τn =⇒ τ ′

1 . . . τ ′
n T ′

with T either datatype or defined type

Built-in types are translated to the lifting of ths corresponding HOL type.
The Isabelle/HOLCF type constructor lift is used to lift types to flat domains.
The type constructor llist is dicussed in the next section.

4 Translation of Datatypes

As explained in the Haskell report [PJ03], section 4.2.3, the following four Haskell
declarations

data D1 = D1 Int
data D2 = D2 !Int
type S = Int
newtype N = N Int

have four different semantics. Indeed, the correct translation to Is-
abelle/HOLCF is as follows:

domain D1 = D1 (lazy D1_1::"Int \mathit{lift}")
domain D2 = D2 (D2_1::"Int \mathit{lift}")
types S = "Int \mathit{lift}"
pcpodef N = "{x:: Int \mathit{lift} . True}"
by auto

In Isabelle/HOLCF, the keyword domain defines a (possibly recursive) domain
as solution of the corresponding domain equation. The keyword lazy ensures that
the constructor D1 is non-strict, i.e. D1 ⊥ 6= ⊥. The keyword pcpodef can be
used to define sub-pcpos of existing pcpos; here, we use it just to introduce an
isomorphic copy of an existing pcpo — this is the semantic of Haskell newtype
definitions.

Lists are translated to the domain llist, defined as follows in our prelude
theory HsHOLCF :

domain ′a llist = nil | ## (lazy HD :: ′a) (lazy TL :: ′a llist)

allowing for partial list as well as for infinite ones [MNvOS99].

The general scheme for translation of mutually recursive lazy Haskell
datatypes to Isabelle/HOLCF domains is as follows:



data φn = Cn1 w1 . . . wh | . . . | C1q z1 . . . zk =⇒
domain φ′

1 = C ′
11 (lazy d111 :: x′

1) . . . (lazy d11i :: x′
i) |

. . . |
C ′

1p (lazy d1p1 :: y′
1) . . . (lazy d1pj :: y′

j)
and . . .
and φ′

n = C ′
n1 (lazy dn11 :: w′

1) . . . (lazy dn1h :: w′
h) |

. . . |
C ′

nq (lazy dnq1 :: z′
1) . . . (lazy dnqk :: z′

k)

Here, the dnqk are the selectors.

5 Translation of Kinds and Type Classes

Classes
Eq =⇒ Eq
K =⇒ K ′

Type schemas

({K v} ∪ ctx) ⇒ τ =⇒ (ctx ⇒ τ)′ [(v′ :: s)/(v′ :: (K ′ ∪ s))]
{} ⇒ τ =⇒ τ ′

Haskell type variables are translated to variables of class pcpo. Each type is
associated to a sort in Isabelle (in Haskell, the same concept is called “kind”),
defined by the set of the classes of which it is member.
Declarations

class K where (Dec1; . . . ;Decne) =⇒ class K ′ ⊆ pcpo; Dec′
1; . . . ; Dec′

n

f :: φ =⇒ consts f ′ :: φ′

type τ = τ1 =⇒ type τ = τ ′
1

(data φ1 = C11 x1 . . . xi | . . . | C1p y1 . . . yj ;
. . . ;

Definitions

instance ctx ⇒ KT (T v1 . . . vn) where
(f1 :: τ1 = t1; . . . ; fn :: τn = tn) =⇒

instance
τ ′ :: K ′

T ({pcpo} ∪ {K ′ : (K v1) ∈ ctx}, . . . ,
{pcpo} ∪ {K ′ : (K vn) ∈ ctx})

with proof obligation;
defs f ′

1 :: (ctx ⇒ τ1)′ == t′1; . . . ; f ′
n :: (ctx ⇒ τn)′ == t′n

Classes in Isabelle and Haskell are built quite differently. In Haskell, a type
class is associated to a set of function declarations, and it can be interpreted



as the set of types where those functions are defined. In Isabelle, a type class
has a single type parameter, it is associated to a set of axioms in a single type
variable, and can be interpreted as the set of types that satisfy those axioms.

Not all the problems have been solved with respect to arities that may con-
flict in Isabelle, although they correspond to compatible Haskell instantiations.
Moreover, Isabelle does neither allow for multi-parameter classes, nor for type
constructor ones, therefore the same translation method cannot be applied to
them.

Defined single-parameter classes are translated to Isabelle/HOLCF as sub-
classes of pcpo with empty axiomatization. Methods declarations associated with
Haskell classes are translated to independent function declarations with appro-
priate class annotation on type variables. In Isabelle, each instance requires
proofs that class axioms are satisfied by the instantiating type — anyway, as
long as there are no axioms proofs are trivial and proof obligation may be auto-
matically discharged. Method definitions associated with instance declarations
are translated to independent function definitions, using type annotation and
relying on Isabelle overloading.

In the internal representation of Haskell given by Programatica, function
overloading is handled by means of dictionary parameters [Jon93]. This means
that each function has additional parameters for the classes associated to its type
variables. In fact, dictionary parameters are used to decide, for each instantiation
of the function type variables, how to instantiate the methods called in the
function body. On the other hand, overloading in Isabelle is obtained by adding
explicitly type annotation to function definitions — dictionary parameters may
thus be eliminated.

The translation of built-in classes may involve axioms — this is the case
for equality. An Isabelle/HOLCF formalisation, based on the methods speci-
fication in [PJ03], has been given as follows in HsHOLCF (neg is lifted negation).

consts
heq :: ′a → ′a → tr
hneq :: ′a → ′a → tr

axclass Eq < pcpo
eqAx : heq · p · q = neg · (hneq · p · q)

Functions heq and hneq can be defined, for each instantiating type, with the
translation of equality and inequality, respectively. For each instance, a proof
that the definitions satisfy eqAx needs to be given — the translation will simply
print out sorry (a form of ellipsis in Isabelle). The definition of default methods
for built-in types and the associated proofs can be found in HsHOLCF.

6 Translation of Function Definitions and Terms

Terms of built-in type are translated using Isabelle/HOLCF-defined lift-
ing function Def. The bottom element ⊥ is used for undefined terms.



Isabelle/HOLCF-defined flift1 :: (′a ⇒′ b :: pcpo) ⇒ (′a lift →′ b) and
flift2 :: (′a ⇒′ b) ⇒ (′a lift →′ b lift) are used to lift operators, as well as the
following, defined in HsHOLCF.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)
fliftbin f == flift1 (λx. flift2 (f x))

Boolean values are translated to values of bool lift (tr in Isabelle/HOLCF) i.e.
TT, FF and ⊥, and Boolean connectives to the corresponding Isabelle/HOLCF
operators. Isabelle/HOLCF-defined If then else fi and case syntax are used to
translate conditional and case expressions, respectively. There are restrictions,
however, on case epressions, due to limitations in the translation of patterns;
in particular, the case term has to be a variable, and only simple patterns are
allowed (no nested ones). On the other hand, Isabelle sensitiveness to the order
of patterns in case expressions is dealt with. Multiple function definitions are
translated as definitions based on case expressions. In function definitions as
well as in case expressions, both wildcards — not available in Isabelle — and
incomplete patterns — not allowed — are dealt with by elimination,⊥ being used
as default value in the latters. Only let expressions without patterns on the left
are dealt with; where expressions, guarded expressions and list comprehension
are not covered.
Definitions

f x p1 x1 = t1; . . . ; f x pn xn = tn =⇒
(f x = case y of (p1 → (\x1 → t1); . . . ; pn(→ \xn → tn)))′

f x = t =⇒ defs f ′ :: φ′ == LAM x′. t′

with f :: φ not occurring in t
(f1 v1 = t1; . . . ; fn vn = tn) =⇒

fixrec f ′
1 :: φ′

1 = (LAM v1
′. t′1) and

. . .
and f ′

n :: φ′
n = (LAM vn

′. t′n)
with f1 :: φ1, . . . , fn :: φn mutually recursive

Function declarations use Isabelle keyword consts. Datatype declarations in
Isabelle/HOLCF are domain declarations and require explicitly destructors. Mu-
tually recursive datatypes relies on specific Isabelle syntax (keyword and). Order
of declarations is taken care of.

Non-recursive definitions are translated to standard definitions using Isabelle
keyword defs. Recursive definitions rely on Isabelle/HOLCF package fixrec which
provides nice syntax for fixed point definitions, including mutual recursion.
Lambda abstraction is translated as continuous abstraction (LAM ), function
application as continuous application (the dot operator), equivalent to lambda
abstraction (λ) and standard function application, respectively, when all argu-
ments are continuous.



7 Example Proofs

8 Conclusion and future work

Concerning related work, although there have been translations of functional lan-
guages to first-order systems — those to FOL of Miranda [Tho94,Tho89,HT95]
and Haskell [Tho92], both based on large-step operational semantics; that of
Haskell to Agda implementation of Martin-Loef type theory in [ABB+05] — still,
higher-order logic may be quite helpful in order to deal with features such as cur-
rying and polymorphism. Moreover, higher-order approaches may rely on deno-
tational semantics — as for examples, [HMW05] translating Haskell to HOLCF,
and [LP04] translating ML to HOL — allowing for program representation closer
to specification as well as for proofs comparatively more abstract and general.

The translation of Haskell to Isabelle/HOLCF proposed in [HMW05] uses
deep embedding to deal with types. Haskell types are translated to terms, relying
on a domain-theoretic modelling of the type system at the object level, allowing
explicitly for a clear semantics, and providing for an implementation that can
capture most features, including type constructor classes. In contrast, we provide
in the case of Isabelle/HOLCF with a translation that follows the lines of a
denotational semantics under the assumption that type constructors and type
application in Haskell can be mapped to corresponding constructors and built-
in application in Isabelle without loss from the point of view of behavioural
equivalence between programs — in particular, translating Haskell datatypes to
Isabelle ones. Our solution gives in general less expressiveness than the deeper
approach — however, when we can get it to deal with cases of interest, it might
make proofs easier.

Isabelle does not allow for type constructor classes, therefore there is hardly
a way shallow embedding of Haskell types may extend to cover them. This
limitation is particularly acute with respect to monads and do notation. The
problem is brilliantly avoided in [HMW05] by resorting to a deeper modelling of
types. operator.

The main advantage of shallow embedding is to get as much as possible out
of the automation currently available in Isabelle, especially with respect to type
checking. Isabelle/HOLCF in particular provides with an expressive semantics
covering lazy evaluation, as well as with a smart syntax — also thanks to the
fixrec package. The main disadvantage lies with lack of type constructor classes.
Anyway, it is possible to get around the obstacle, at least partially, by relying
on an axiomatic characterisation of monads and on a proof-reuse strategy that
actually minimises the need for interactive proofs.

Future work should use this framework for proving properties of Haskell
programs. For monadic programs, we are also planning to use the monad-
based dynamic Hoare and dynamic logic that already have been for-
malised in Isabelle [Wal05]. Our translation tool from Haskell to Isabelle
is part of the Heterogeneous Tool Set Hets and can be downloaded from
http://www.dfki.de/sks/hets. More details about the translations can be
found in [TLMM07].
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