
Translating Haskell to Isabelle logics in Hets

Paolo Torrini, Till Mossakowski, Christian Maeder

No Institute Given

Abstract. Automated, partial translations of Haskell into Isabelle higher-order logic (with or with-

out computable functions) have been implemented as functions of Hets, a Haskell-based proof-

management and program development system that allows for integration with other tools. The

application, built on top of Programatica-style static analysis, can translate simple Haskell programs

to HOLCF and, under stronger restrictions, to HOL. Both translations are based on shallow embed-

ding and rely informally on denotational semantics.

Work on the integration of compilers, analyzers and theorem-provers, as well as translations between
programming and specification languages, may help on the way to making formal development and
verification of programs more viable. In order to verify formally a program, we need to formulate the
requirements in a logic that also allows for the program to be represented; to translate the program
to the logic; finally, to carry out a proof of the correctness statement. Although specifications and
proofs require normally the biggest amount of work, translations can also be a significant source of
potential problems. For the verification to be reliable and efficient, the translation should rest on
the definition of a formal semantics of the programming language in the specification logic; it should
be carried out safely, at best automatically; it should also give program representations that do not
make proofs more complex than necessary. It has long been argued that functional languages, based
on notions closer to general, mathematical ones, can make the task of proving assertions about them
easier, owing to the clarity and relative simplicity of their semantics [?].
In this report we are presenting automated translations based on denotational semantics of Haskell
programs into Isabelle higher-order logic. Haskell is a strongly typed, purely functional language
with lazy evaluation. It relies on a system of polymorphic types extended with type constructor
classes, and has a syntax for side effects and pseudo-imperative code based on monadic operators
[?]. The translations are implemented as functions of Hets [?], an Haskell-based application designed
to support integration of specification formalisms for the development of Haskell programs. Hets
supplies with parsing, static analysis, proof management and interface to various language-specific
tools. From the point of view of generic theorem proving, Hets relies on an interface with Isabelle,
a state-of-the-art interactive theorem-prover, written in SML, allowing for the formalization of a
variety of logics [?]. Hets relies on Programatica [?] for the parsing and static analysis of Haskell
programs. Programatica is a Haskell-specific formal development system built at OGI, envisioned to
provide more than analysis. Its own proof management includes a specification logic and translations
to different proof tools, notably to Isabelle [?]. In section it is going to be clarified how our work
differs from theirs.

1 Isabelle

Isabelle-HOL (hereafter simply HOL) is the implementation in Isabelle of classical higher-order
logic based on simply typed lambda calculus, extended with axiomatic type classes. It provides
considerable support for reasoning about programming functions, both in terms of libraries and
automation. Since the late nineties, it has essentially superseded FOL (classical first-order logic) as
the logic of standard use in Isabelle. HOL has an implementation of recursive functions based on
Knaster-Tarski fixed-point theorem. All functions are total; partiality may be dealt with by lifting
types through the option type constructor.
HOLCF [?] is HOL conservatively extended with the logic of computable functions — a formalization
of domain theory. In HOL, types are just sets; functions may not be computable, and a recursive
function may require discharging proof obligations already at the definition stage — in fact, a
specific measure has to be given for the function to be proved monotonic. In contrast, domain
theory has each type interpreted as a pcpo (pointed complete partially ordered set) that is, as a set
with a partial order which is closed w.r.t. ω-chains and has a bottom. All functions defined over
domains, including partial ones, are continuous, therefore computable. Recursion can be expressed



in terms of least fixed-point operator, and so, in contrast with HOL, function definition is never
dependant on proofs.
The Isabelle formalization of HOLCF is based on axiomatic type classes [?], following an approach
that makes it possible to deal with complete partial orders while abstracting away from any specific
relation. The class of types is pcpo — whereas in HOL it is type. Domain theory offers a good basis
for the semantical analysis of programming languages; however, it may make proofs comparatively
hard. After being spared the need to discharge proof obligations at the defining stage, one has to bear
with assumptions over the continuity of functions while proving theorems. A standard strategy to
get the best out of the two systems is to define as much as possible in HOL language, using HOLCF
type constructors to lift types to domains only when this is needed.

2 Translations

A translation may be carried out relying on different semantical approaches and at different levels
of depth, depending mainly on the expressiveness of the target logic. Different formalisms may make
the embedding of certain features more or less hard. Translations into FOL such as those based on
large-step operational semantics of Miranda [?,?,?] and Haskell [?] cannot deal straightforwardly at
first order with higher-order features such as currying. The translation of Haskell to the Agda imple-
mentation of Martin-Loef type theory in [?] gets complicated dealing with Haskell polymorphism.
The expressiveness of higher-order logic help overcome more plainly most of these obstacles, and
makes it possible to adopt a higher-level approach based on denotational semantics, as proposed in
[?] to translate Haskell to HOLCF, and used in [?] to translate ML to HOL. This approach allows
for representations of programs that are closer to their specification as well as for proofs that are
relatively more abstract and general.
Expressiveness plays an important role in the “depth” issue, as well. A shallow embedding is one that
relies as much as possible on built-in features and packages provided with the implementation of the
target language, especially with respect to general features such as types, classes, and recursion. The
deeper the embedding, the less it relies on such features. This independence may be a plus from the
point of view of semantic clarity and logical generality — object-logical, “deep” translation can be
used to overcome ad-hoc limitations imposed by the built-in, meta-level features. Taking advantage
of those features, on the other hand, may help make the theorem proving less tedious and make it
easier to rely on common proof methods.
The translation of ML in [?] gives an example on the deep side — a class of types with bottom
elements is defined in HOL for the sake of the embedding. On the other hand, the translation of
Haskell to HOLCF proposed in [?] relies on a generic formalization of domain theory, particularly
on the fixrec package for recursive functions (part of HOLCF in Isabelle 2006) developed in order
to provide with a friendly syntax that covers mutually recursive definitions, too. Not even this
translation is shallow as far as types are concerned, though. In order to capture an important feature
of the Haskell type system, notably type constructor classes, Haskell types are not translated to
HOLCF types, rather they are to terms, relying on a modelling of the Haskell type system at the
object level. In this way it is possible to give a complete account of the type system. The practical
drawback is that plenty of the automation built into the Isabelle type checking is lost, unless one
is prepared to reimplement a lot.
The translations of Haskell to HOLCF and HOL that we are presenting here are based on deno-
tational semantics keeping to a shallow approach. The translation to HOLCF relies on the fixrec
package, along similar lines to those in [?]. In contrast with them, we translate Haskell types to
HOLCF types, quite directly, and Haskell classes to Isabelle axiomatic classes, wishing to take ef-
fectively advantage of Isabelle type checking. We rely on the assumption that types in HOLCF are
similar enough to those in Haskell to allow for embedding, save for possible implementation sub-
tleties that we are not going to consider. We expect that operational equivalence between Haskell
programs and their translation to HOLCF holds up to the level of typeable output. The translation
covers a significant part of the syntax used in the Prelude, although it is still incomplete in one
important respect — it does not include type constructor classes; we have plans, however, for an
extention that should address this aspect as well.
Conceptually, type classes in Isabelle are quite different from those in Haskell. The formers are
associated with sets of axioms, whereas the latters come with sets of function declarations. Isabelle
classes may have at most a single type parameter. Most importantly, Isabelle does not allow for type
constructor classes. The last limitation is serious, since it makes hard to cope with essential Haskell
features such as monads and do notation. In alternative to the treatment of types proposed in [?],



we would like to get around the obstacle by relying on an extension of Isabelle based on theory
morphism (see section ). The AWE system [?] is in fact an implementation of such an extension.
Our translation to HOL, shallow as well, is much more limited. The most important restriction
is related to recursion — only primitive recursive functions are covered. This limitation appears
relatively hard to overcome, given the way syntax for full recursion works in HOL. Operational
equivalence up to typeable output for the remaining fragment would require using option types,
but we do not pursue it here, rather we rely on a restriction to terminating programs for semantical
correctness. Under such restrictions, however drastic, this translation gives expressions that are
particularly simple and therefore potentially useful to verify some properties.

3 Haskell2Isabelle

The Hets function Haskell2Isabelle supports the translation of simple Haskell programs to HOLCF
and, with more restriction, to HOL. Not all the syntactical features used in the Prelude and main
libraries are covered. Some of the most noticeable limitations are those related to built-in types,
pattern-matching, local definitions, import and export. There are additional and more substantial
restrictions in the case of HOL, related to termination and recursion. Each of the translations
relies on a base theory. These are Isabelle theory files, respectively HsHOLCF, extending HOLCF,
and HsHOL, extending HOL, which are included in the Hets distribution. Each of them provides
definitions and axiomatizations of notions that are used in the corresponding translation — notably
equality.
Information for the use of Hets may be found in [?] and a general outlook in [?]. The Haskell-to-
Isabelle translation requires essentially GHC, Isabelle 2006 and Programatica — with respect to
the latter, both analysis and translation functions in Hets make use of its modules. The command
to run the application is
hets -v[1–5] -t Haskell2Isabelle[HOLCF — HOL] -o thy filename
where options set verbosity, target logic and name of the output file. The input file (last argument)
must be a GHC source (hs extension). The Haskell program gets analyzed and translated. The result
of a successful execution is an Isabelle theory file (thy extension) depending on the corresponding
base theory.
The internal representation of Haskell in Hets (module Logic Haskell and particularly HatAna) is
essentially the same as in Programatica, whereas the internal representation of Isabelle (module
Logic Isabelle and particularly IsaSign) is a Haskell reworking of the ML definition of Isabelle own
base logic, extended in order to allow for a straightforward representation of HOL and HOLCF.
Haskell programs as well as Isabelle theories are internally represented as Hets theories — each of
them a data-structures formed by a signature and a set of sentences, fitting a theoretical frame-
work described in [?]. Each translation, defined as composition of the signature translation with the
translation of all sentences, has the structure of a morphism from theories in the internal represen-
tation of the source language to those in the representation of the target language. The distribution
module Haskell2IsabelleHOLCF contains the main function, dependent on the target logic. The
module IsaPrint provides the essential functions for the pretty-printing of Isabelle theories.
The following gives a list of reserved names, i.e. the names that are used in order to either rename or
name automatically variables and constants in the translations. 1) Type variables, in the translation
to HOL: ’vX ; any name terminating with ’XXn where n is an integer. 2) Term variables, in both
translations: pXn, qXn, with n integer. 3) Constants, in the translation to HOL: strings obtained
by joining together names of defined functions, using X as end sequence and separator.

3.1 HOLCF: Type signature

The translation to HOLCF keeps into account partiality, i.e. the fact that a function might be
undefined for certain values, either because definition is missing, or because the program does not
terminate. It also keeps into account laziness, i. e. the fact that by default function values in Haskell
are passed by name and evaluated only when needed. Essentially, we are following the main lines of
the “crude” denotational semantics for lazy evaluation in [?], pp. 216–217. Raising an exception is
different from running forever, and both are different from stopping short of evaluation. However,
from the point of view of the printable output, these behaviours are similar and can be treated
semantically as such, i.e. using one and the same bottom element.
Each type in Isabelle has a sort, defined by the set of the classes of which it is member. Haskell
type variables are translated to HOLCF ones, of class pcpo. Each built-in type is translated to



the lifting of its corresponding HOL type. Properly covered are Haskell booleans and unbounded
integers, associated respectively to HOL booleans and integers. Bound integers and floating point
numbers would need low-level modelling, and have not been covered. Bounded integers in particular
are simply treated as unbounded in the translation. The HOLCF type constructor lift is used to lift
HOL types to flat domains. In the case of booleans, we can use type tr, defined as equal to bool lift
in HOLCF. In the case of integers, we use dInt, defined in HsHOLCF to equal int lift. The types
of Haskell functions and product are translated, respectively, to HOLCF function spaces and lazy
product — i.e. such that ⊥ = (⊥ ∗ ⊥) 6= (⊥ ∗′ a) 6= (′a ∗ ⊥), consistently with lazy evaluation.
Type constructors are translated to corresponding HOLCF ones (noticeably, parameters precede
type constructors in Isabelle syntax). In particular, lists are translated to the domain llist defined
in HsHOLCF. Function declarations are translated to HOLCF ones (keyword consts). Names (for
types as well as for terms) are translated by a function (t here) that preserves them, up to avoidance
of clashes with HOLCF keywords. Translation of types (minus mutual recursion) may be summed
up as follows:

dae = ′at :: pcpo
dBoole = tr
dIntegere = dInt
da → be = dae → dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae llist
dTyCons a1 . . . ane = da1e . . . dane TyConst

In HOL, datatype declarations define types of class type by keyword datatype; in contrast, in
HOLCF, they define types of class pcpo (i.e. domains) by keyword domain (so we also may call
them domain declarations). Each recursive datatype declaration in Haskell is translated to the
corresponding one in HOLCF. The translation of mutually recursive datatypes relies on specific
Isabelle syntax (keyword and), as in the next example.

data AType a b = ABase a | AStep (AType a b) (BType a b)
data BType a b = BBase b | BStep (BType a b) (AType a b)

This translates to HOLCF as the following.

domain (′a :: pcpo,′ b :: pcpo) BType = BBase (BBase 1 ::′ b) |
BStep (BStep 1 :: (′a,′ b) BType) (BStep 2 :: (′a,′ b) AType)

and (′a :: pcpo,′ b :: pcpo) AType = ABase (ABase 1 ::′ a) |
AStep (AStep 1 :: (′a,′ b) AType) (AStep 2 :: (′a,′ b) BType)

Notably, domain declarations require an explicit introduction of destructors. Both translations (to
HOL as well as to HOLCF) take care automatically of the order of datatype declarations — this
is needed, insofar as, differently from Haskell, Isabelle requires them to be listed according to their
order of dependency.

3.2 HOLCF: Sentences

Each Haskell function definition is translated to a corresponding one. Non-recursive definitions are
translated to standard ones (keyword defs), whereas the translation of recursive definitions relies
on the fixrec package. Lambda abstraction is translated as continuous abstraction (LAM ), and
function application as continuous application (the dot operator) — these notions coincide with the
corresponding, HOL-defined ones, whenever their arguments are continuous.
Terms of built-in type (boolean and integers) are translated to lifted HOL values, using the HOLCF-
defined lifting function Def. The bottom element ⊥ is used for all undefined terms. The following
operator, defined in HsHOLCF, is used to map binary arithmetic functions to lifted functions over
lifted integers.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)
fliftbin f == LAM yx. (flift1 (%u. flift2 (%v. f v u))) · x · y

Booleans are translated to values of tr — TT, FF and ⊥, and boolean connectives are translated to
the corresponding HOLCF-defined lifted operators. HOLCF-defined If then else fi and case syntax



are used to translate, respectively, conditional and case expressions. There are some restrictions,
however, on the latters, due to limitations in the translation of patterns (see section ); in particular,
the case term should always be a variable, and no nested patterns are allowed.
The translation of lists and list constructors relies on the following HsHOLCF -defined datatype.

domain ′a llist = lNil | lCons (lazy lHd ::′ a) (lazy lT l ::′ a llist)

Under the given interpretation, a stream as well as an undefined list function take value ⊥. This
may be regarded as a semantical weakness.
Haskell allows for local definitions by means of let and where expressions. The let expressions where
the left-hand side is a variable are translated to similar Isabelle ones; other let expressions (i.e.
those containing patterns on the left hand-side) and the where expressions are not covered. The
translation of terms (minus mutual recursion) may be summed up, essentially, as follows:

dx :: ae = xt :: dae
dce = ct

d\x → fe = LAM xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = FIX ft. ft · dae . . . · dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe

In HOLCF all recursive functions can be defined by fixpoint operator — a function that, given
as argument the defining term abstracted of the recursive call name, returns the corresponding
recursive function. Coding this directly turns out to be rather cumbersome, particularly in the case
of mutually recursive functions, where tuples of defining terms and tupled abstraction would be
needed. In contrast, the fixrec package allows us to handle fixpoint definitions in a way much more
similar to ordinary Isabelle recursive definitions, providing with friendly syntax for mutual recur-
sion, as well. Continuing the example,

fun1 :: (a → c) → (b → d) → AType a b → AType c d

fun1 f g k = case k of
ABase x → ABase (f x)
AStep x y → AStep (fun1 f g x) (fun2 f g y)

fun2 :: (a → c) → (b → d) → BType a b → BType c d

fun2 f g k = case k of
BBase x → BBase (g x)
BStep x y → BStep (fun2 f g x) (fun1 f g y)

this code translates to HOLCF as follows:

consts
fun1 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →

(′a :: pcpo,′ b :: pcpo) AType → (′c :: pcpo,′ d :: pcpo) AType
fun2 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →

(′a :: pcpo,′ b :: pcpo) BType → (′c :: pcpo,′ d :: pcpo) BType

fixrec fun1 = (LAMf. LAMg. LAMk. case k of
ABase · pX1 => ABase · (f · pX1) |
AStep · pX1 · pX2 =>
AStep · (fun1 · f · g · pX1) · (fun2 · f · g · pX2))

and fun2 = (LAMf. LAMg. LAMk. case k of
BBase · pX1 => BBase · (g · pX1) |
BStep · pX1 · pX2 =>
BStep · (fun2 · f · g · pX1) · (fun1 · f · g · pX2))

The translations take care automatically of the fact that, in contrast with Haskell, Isabelle requires
patterns in case expressions to follow the order of datatype declarations.
In the Programatica representation of Haskell, class information about type parameters is given
by adding dictionary parameters to normal ones. These are eliminated by the translation, as class



information in Isabelle may be given by annotating arguments. In particular, each definition includes
the type of the defined function complete with class annotation, in order to allow for overloading
(a detail we omitted to show for the sake of readability in some of the examples here).

3.3 HOL: Type signature

The translation to HOL is semantically rather crude, it takes into account neither partiality nor
laziness, and so, for soundness, it requires all functions in the program to be total ones.
An account of partiality could be obtained using the option type constructor to lift types, along
lines similar to those followed in HOLCF with lift. Here instead we are just mapping Haskell types to
corresponding, unlifted HOL ones — so for booleans and integers. Type variables are of class type.
HOL function type, product and list are used to translate the corresponding Haskell constructors.
The translation of types (minus mutual recursion) may be summed up as follows.

dae = ′at :: type
dBoole = bool
dIntegere = int
da → be = dae ⇒ dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae list
dTyCons a1 . . . ane = da1e . . . dane TyConst

Recursive and mutually recursive data-types declarations are translated to HOL as datatype dec-
laration.

datatype (′a,′ b) BType = BBase ′b |
BStep ((′a,′ b) BType) ((′a,′ b) AType)

and (′a,′ b) AType = ABase ′a |
AStep ((′a,′ b) AType) ((′a,′ b) BType)

Metalevel features are essentially shared with the HOLCF translation.

3.4 HOL: Sentences

Non-recursive definitions are treated in an analogous way to the translation into HOLCF. Stan-
dard lambda-abstraction (%) and function application are used here instead of continuous ones.
Partial functions, and particularly case expressions with incomplete patterns, are not allowed. The
translation of terms (minus recursion and case expressions) may be summed up as follows:

dx :: ae = xt :: dae
dce = ct

d\x → fe = % xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = ft dae . . . dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe

Recursive definitions set HOL and HOLCF apart. In HOL a distinction is drawn, and syntactically
highlighted, between primitive recursive functions (introduced by keyword primrec) and generic
recursive ones (by keyword recdef ). Termination is guaranteed for each of the formers, by the fact
that recursion is based on the datatype structure of one of the parameters. In contrast, termination
is not a trivial matter for the latters. A strictly decreasing measure must be provided, associated
to the parameters of the defined function. This requires a degree of ingenuity that cannot be easily
dealt with automatically. For this reason, the translation to HOL is restricted to primitive recursive
functions.
Mutual recursion is allowed for under additional restrictions — more precisely: 1) all the functions
involved are recursive in the first argument; 2) recursive arguments are of the same type in each
function. The translation of mutually recursive functions a → b, . . . a → d introduces a new function
a → (b ∗ . . . ∗ d) recursively defined, for each case pattern, as the product of the values correspond-
ingly taken by the original, non-recursively defined ones.



fun3 :: AType a b → (a → a) → AType a b

fun3 k f = case k of
ABase a → ABase (f a)
AStep a b → AStep (fun4 a) b

fun4 :: AType a b → AType a b

fun4 k = case k of
AStep x y → AStep (fun3 x (\z → z)) y
ABase x → ABase x

These functions, satisfying the restrictions, will translate to the following.

consts
fun3 :: (′a :: type,′ b :: type)AType ⇒ (′a :: type ⇒′ a :: type) ⇒

(′a :: type,′ b :: type)AType
fun4 :: (′a :: type,′ b :: type)AType ⇒ (′a :: type ⇒′ a :: type) ⇒

(′a :: type,′ b :: type)AType
fun3 Xfun4 X :: (′a :: type,′ b :: type)AType ⇒

((′aXX1 :: type ⇒′ aXX1 :: type) ⇒
(′aXX1 :: type,′ bXX1 :: type)AType)∗
((′aXX2 :: type ⇒′ aXX2 :: type) ⇒
(′aXX2 :: type,′ bXX2 :: type)AType)

defs

fun3 def : fun3 == %k f. fst ((fun3 Xfun4 X ::
(′a :: type,′ b :: type)AType ⇒ ((′a :: type ⇒′ a :: type)
⇒ (′a :: type,′ b :: type)AType) ∗ ((unit ⇒ unit) ⇒
(unit, unit)AType)) k) f

fun4 def : fun4 == %k f. snd ((fun3 Xfun4 X ::
(′a :: type,′ b :: type)AType ⇒ ((unit ⇒ unit) ⇒ (unit, unit)AType)∗
((′a :: type ⇒′ a :: type) ⇒ (′a :: type,′ b :: type)AType)) k) f

primrec
fun3 Xfun4 X (ABase pX1) = (%f. ABase (f pX1),

%f. ABase pX1)
fun3 Xfun4 X (AStep pX1 pX2) =

(%f. AStep (snd (fun3 Xfun4 X pX1) f) pX2,
%f. AStep (fst (fun3 Xfun4 X pX1) f) pX2)

Calls of the recursive functions in the non-recursive definitions are annotated with type where
exceeding type variables are instantiated with the unit type, as required by Isabelle in order to
avoid definitions from which inconsistencies are derivable.

3.5 Patterns

Support of patterns in definitions and case expressions is more restricted in Isabelle than in Haskell.
Nested patterns are overall disallowed. In case expressions, the case term is required to be a variable.
Both of these restrictions apply to our translations. A further Isabelle limitation concerning case
expressions — sensitiveness to pattern order — is dealt with automatically. Similarly, wildcards —
something unknown to Isabelle — are dealt with, as well as, in HOLCF, incomplete patterns. The
exclusion of nested patterns complicate the translation of some specific ones — in fact, guarded ex-
pressions and list comprehension are not covered; their use should be avoided here, using conditional
expressions and map instead.
Multiple function definitions using top level pattern matching are translated as definitions based
on a single case expression; this is due to HOL more than to HOLCF. In fact, multiple definitions
in Isabelle are only allowed with the syntax of recursive ones. However, in HOL primitive recursive
definitions, patterns are allowed for only in one parameter. In order to translate definitions with
more patterns as arguments, without resorting to tuples and to more complex syntax (recdef instead
of primrec) we translate multiple definitions by top level pattern matching as definitions by case



construct.

ctl :: Bool → Bool → Bool → Bool
ctl False a False = a
ctl True a False = False
ctl False a True = True
ctl True a True = a

This translates to HOL as the following.

consts ctl :: bool ⇒ bool ⇒ bool ⇒ bool

defs

ctl def : ctl == %qX1.%qX2.%qX3. case qX1 of
False ⇒ case qX3 of

False ⇒ qX2 |
True ⇒ True |

True ⇒ case qX3 of
False ⇒ False |
True ⇒ qX2

This example does not go through with the translation to HOLCF, as booleans there are translated
to values of tr, which is not a recursive datatype. The following gives an alternative that can be
handled (a new datatype is used instead of booleans).

data Two = Fx | Tx
ctlx :: Two → Two → Two → Two
ctlx Fx a Fx = a
ctlx Tx a Fx = Fx
ctlx Fx a Tx = Tx
ctlx Tx a Tx = a

This translates to HOLCF as follows.

domain Two = Fx | Tx

consts ctlx :: Two → Two → Two → Two

defs

ctlx def : map5 == LAM qX1 qX2 qX3. case qX1 of
Fx ⇒ case qX3 of

Fx ⇒ qX2 |
Tx ⇒ Tx |

Tx ⇒ case qX3 of
Fx ⇒ Fx |
Tx ⇒ qX2

In case expressions as well as in top level pattern matching definitions, wildcards may be used —
though not in nested position. Incomplete patterns are translated to HOLCF using ⊥ as default
value.

3.6 Classes

Haskell defined classes are translated to Isabelle as classes with empty axiomatization. Isabelle
allows classes with no more than one type parameter, therefore our translations can support only
them — it might be possible to handle more than one parameter using tuples, but this would surely
involve considerable complications dealing with conditional instances.

Instance declarations are translated to corresponding ones in Isabelle. Isabelle instances in general
require proofs that class axioms are satisfied by the types, but as long as there are no axioms the
proofs are trivial and can be handled automatically. Function declarations associated with Haskell



classes are translated as independent function declarations with appropriate class annotation. Func-
tion definitions associated with instance declarations are translated as overloaded function defini-
tions, relying on class annotation of the typed variables.

classClassA a where

abase :: a → Bool

astep :: a → Bool

instance (ClassA a, ClassA b) ⇒ ClassA (AType a b) where

abase x = case x of
ABase u → True
→ False

This code translates to HOLCF as follows.

axclass ClassA < pcpo

instance AType :: (pcpo, ClassA, pcpo, ClassA) ClassA

by intro classes

consts

abase :: ′a :: {ClassA, pcpo} → tr
astep :: ′a :: {ClassA, pcpo} → tr
default abase :: ′a :: {ClassA, pcpo} → tr
default astep :: ′a :: {ClassA, pcpo} → tr

defs

AType abase def :
abase :: (′a :: {ClassA, pcpo},′ b :: {ClassA, pcpo}) AType → tr

== LAMx. case x of
ABase · pX1 ⇒ TT |
AStep · pX2 · pX1 ⇒ FF

AType astep def :
astep :: (′a :: {ClassA, pcpo},′ b :: {ClassA, pcpo}) AType → tr

== default astep

Similarly, it translates to HOL.

axclass ClassA < type

instance AType :: ({type, ClassA}, {type, ClassA}) ClassA

by intro classes

consts

abase :: ′a :: {ClassA, type} ⇒ bool
astep :: ′a :: {ClassA, type} ⇒ bool
default abase :: ′a :: {ClassA, type} ⇒ bool
default astep :: ′a :: {ClassA, type} ⇒ bool

defs

AType abase def :
abase :: (′a :: {ClassA, type},′ b :: {ClassA, type}) AType ⇒ bool

== %x. case x of
ABase pX1 ⇒ True |
AStep pX2 pX1 ⇒ False

AType astep def :
astep :: (′a :: {ClassA, type},′ b :: {ClassA, type}) AType ⇒ bool

== default astep



3.7 Equality

At the moment equality is the only covered built-in class. The axiomatizations provided, respec-
tively, in HsHOLCF and HsHOL are based on the abstract definition of the equality and inequality
functions [?]. In both theories, Eq is declared as a subclass of type — in HsHOLCF this is done in
order to instantiate it with lifted types.

consts
hEq :: (′a :: Eq)lift → ′a lift → tr
hNEq :: (′a :: Eq)lift → ′a lift → tr

axioms
axEq : ALLx.(hEq · p · q = Defx) =

(hNEq · p · q = Def(∼ x))

The instantiation of equality (consequently, of inequality) for boolean (and similarly for integer) is
obtained by lifting HOL equality so that ⊥ is returned whenever one of the argument is undefined.

tr hEq def : hEq == fliftbin (%(a :: bool) b. a = b)

In HsHOL the axiomatization reflects the restriction to terminating programs.

consts
hEq :: (′a :: Eq) ⇒ ′a ⇒ bool
hNEq :: (′a :: Eq) ⇒ ′a ⇒ bool

axioms
axEq : hEq p q == ∼ hNEq p q

The instantiation of hEq for boolean and integer is simply taken to be HOL equality.

3.8 Monads

Isabelle does not allow for classes of type constructors, hence a problem in representing monads.
We could deal with this problem relying on an axiomatization of monads that allows for the rep-
resentation of monadic types as an axiomatic class, as presented in [?]. Monadic types should be
translated to newly defined types that satisfy monadic axioms. This would involve defining a theory
morphism, as an instantiation of type variables in the theory of monads. We are planning to rely
on AWE [?], an implementation of theory morphism on top of Isabelle base logic that may be used
to extend HOL as well.

4 Conclusion

The following is a list of features that are covered by our translations.

– predefined types: boolean, integer.
– predefined type constructors: function, cartesian product, list.
– declaration of recursive datatype, including mutually recursive ones.
– predefined functions: equality, booelan constructors, connectives, list constructors, head and

tail list functions, arithmetic operators.
– non-recursive functions, including conditional, case and let and expressions (with restriction

related to use of patterns).
– use of incomplete patterns (in HOLCF) and of wildcards in case expressions.
– total primitive recursive functions (in HOL) and partial recursive ones (in HOLCF), including

mutual ones (with restrictions in the HOL case).
– single-parameter class and instance declarations.

The shallow embedding approach makes it possible to take the most out of the automation currently
available on Isabelle, especially in HOL. Further work should include extending the translation to
cover the whole of the Haskell Prelude. We would also be interested in carrying out an extension
to cover P-logic [?], a specification formalism for Haskell programs included in the Programatica
toolset.


