
Translating Haskell to Isabelle logics in Hets

Paolo Torrini, Till Mossakowski, Christian Maeder

Abstract

Automated, partial translations of Haskell into Isabelle higher-order logic (with or with-

out computable functions) have been implemented as functions of Hets, a Haskell-based

proof-management and program development system that allows for integration with other

tools. The application, built on top of Programatica-style static analysis, can translate simple

Haskell programs to HOLCF and, under stronger restrictions, to HOL. Both translations are

based on shallow embedding and rely informally on denotational semantics.

Work on the integration of compilers, analyzers and theorem-provers, as well as
translations between programming and specification languages, may help on the
way to making formal development and verification of programs more viable. In
order to verify formally a program, we need to formulate the requirements in a logic
that also allows for the program to be represented; to translate the program to the
logic; finally, to carry out a proof of the correctness statement. Although specifica-
tions and proofs require normally the biggest amount of work, translations can also
be a significant source of potential problems. For the verification to be reliable and
efficient, the translation should rest on the definition of a formal semantics of the
programming language in the specification logic; it should be carried out safely, at
best automatically; it should also give program representations that do not make
proofs more complex than necessary. It has long been argued that functional lan-
guages, based on notions closer to general, mathematical ones, can make the task
of proving assertions about them easier, owing to the clarity and relative simplicity
of their semantics [Tho92].

In this report we are presenting automated translations based on denotational
semantics of Haskell programs into Isabelle higher-order logic. Haskell is a strongly
typed, purely functional language with lazy evaluation. It relies on a system of
polymorphic types extended with type constructor classes, and has a syntax for
side effects and pseudo-imperative code based on monadic operators [PJ03]. The
translations are implemented as functions of Hets [MMLW03], an Haskell-based
application designed to support integration of specification formalisms for the de-
velopment of Haskell programs. Hets supplies with parsing, static analysis, proof
management and interface to various language-specific tools. From the point of view
of generic theorem proving, Hets relies on an interface with Isabelle, a state-of-the-
art interactive theorem-prover, written in SML, allowing for the formalization of
a variety of logics [Pau94]. Hets relies on Programatica [HHJK04] for the parsing
and static analysis of Haskell programs. Programatica is a Haskell-specific formal
development system built at OGI, envisioned to provide more than analysis. Its
own proof management includes a specification logic and translations to different

1



proof tools, notably to Isabelle [HMW05]. In section 2 it is going to be clarified how
our work differs from theirs.

1 Isabelle

Isabelle-HOL (hereafter simply HOL) is the implementation in Isabelle of classical
higher-order logic based on simply typed lambda calculus, extended with axiomatic
type classes. It provides considerable support for reasoning about programming
functions, both in terms of libraries and automation. Since the late nineties, it has
essentially superseded FOL (classical first-order logic) as the logic of standard use
in Isabelle. HOL has an implementation of recursive functions based on Knaster-
Tarski fixed-point theorem. All functions are total; partiality may be dealt with by
lifting types through the option type constructor.

HOLCF [MNvOS99] is HOL conservatively extended with the logic of com-
putable functions — a formalization of domain theory. In HOL, types are just sets;
functions may not be computable, and a recursive function may require discharging
proof obligations already at the definition stage — in fact, a specific measure has
to be given for the function to be proved monotonic. In contrast, domain theory
has each type interpreted as a pcpo (pointed complete partially ordered set) that
is, as a set with a partial order which is closed w.r.t. ω-chains and has a bottom.
All functions defined over domains, including partial ones, are continuous, therefore
computable. Recursion can be expressed in terms of least fixed-point operator, and
so, in contrast with HOL, function definition is never dependant on proofs.

The Isabelle formalization of HOLCF is based on axiomatic type classes [Wen05],
following an approach that makes it possible to deal with complete partial orders
while abstracting away from any specific relation. The class of types is pcpo —
whereas in HOL it is type. Domain theory offers a good basis for the semantical
analysis of programming languages; however, it may make proofs comparatively
hard. After being spared the need to discharge proof obligations at the defining
stage, one has to bear with assumptions over the continuity of functions while
proving theorems. A standard strategy to get the best out of the two systems is to
define as much as possible in HOL language, using HOLCF type constructors to lift
types to domains only when this is needed.

2 Translations

A translation may be carried out relying on different semantical approaches and at
different levels of depth, depending mainly on the expressiveness of the target logic.
Different formalisms may make the embedding of certain features more or less hard.
Translations into FOL such as those based on large-step operational semantics of
Miranda [Tho94, Tho89, HT95] and Haskell [Tho92] cannot deal straightforwardly
at first order with higher-order features such as currying. The translation of Haskell
to the Agda implementation of Martin-Loef type theory in [ABB+05] gets compli-
cated dealing with Haskell polymorphism. The expressiveness of higher-order logic
help overcome more plainly most of these obstacles, and makes it possible to adopt
a higher-level approach based on denotational semantics, as proposed in [HMW05]
to translate Haskell to HOLCF, and used in [LP04] to translate ML to HOL. This

2



approach allows for representations of programs that are closer to their specification
as well as for proofs that are relatively more abstract and general.

Expressiveness plays an important role in the “depth” issue, as well. A shallow
embedding is one that relies as much as possible on built-in features and packages
provided with the implementation of the target language, especially with respect to
general features such as types, classes, and recursion. The deeper the embedding,
the less it relies on such features. This independence may be a plus from the point of
view of semantic clarity and logical generality — object-logical, “deep” translation
can be used to overcome ad-hoc limitations imposed by the built-in, meta-level
features. Taking advantage of those features, on the other hand, may help make the
theorem proving less tedious and make it easier to rely on common proof methods.

The translation of ML in [LP04] gives an example on the deep side — a class of
types with bottom elements is defined in HOL for the sake of the embedding. On
the other hand, the translation of Haskell to HOLCF proposed in [HMW05] relies
on a generic formalization of domain theory, particularly on the fixrec package for
recursive functions (part of HOLCF in Isabelle 2006) developed in order to provide
with a friendly syntax that covers mutually recursive definitions, too. Not even this
translation is shallow as far as types are concerned, though. In order to capture
an important feature of the Haskell type system, notably type constructor classes,
Haskell types are not translated to HOLCF types, rather they are to terms, relying
on a modelling of the Haskell type system at the object level. In this way it is
possible to give a complete account of the type system. The practical drawback is
that plenty of the automation built into the Isabelle type checking is lost, unless
one is prepared to reimplement a lot.

The translations of Haskell to HOLCF and HOL that we are presenting here are
based on denotational semantics keeping to a shallow approach. The translation to
HOLCF relies on the fixrec package, along similar lines to those in [HMW05]. In
contrast with them, we translate Haskell types to HOLCF types, quite directly, and
Haskell classes to Isabelle axiomatic classes, wishing to take effectively advantage of
Isabelle type checking. We rely on the assumption that types in HOLCF are similar
enough to those in Haskell to allow for embedding, save for possible implementation
subtleties that we are not going to consider. We expect that operational equivalence
between Haskell programs and their translation to HOLCF holds up to the level of
typeable output. The translation covers a significant part of the syntax used in
the Prelude, although it is still incomplete in one important respect — it does
not include type constructor classes; we have plans, however, for an extention that
should address this aspect as well.

Conceptually, type classes in Isabelle are quite different from those in Haskell.
The formers are associated with sets of axioms, whereas the latters come with sets
of function declarations. Isabelle classes may have at most a single type parameter.
Most importantly, Isabelle does not allow for type constructor classes. The last
limitation is serious, since it makes hard to cope with essential Haskell features
such as monads and do notation. In alternative to the treatment of types proposed
in [HMW05], we would like to get around the obstacle by relying on an extension
of Isabelle based on theory morphism (see section 3.8). The AWE system [BJL06]
is in fact an implementation of such an extension.

Our translation to HOL, shallow as well, is much more limited. The most im-
portant restriction is related to recursion — only primitive recursive functions are

3



covered. This limitation appears relatively hard to overcome, given the way syn-
tax for full recursion works in HOL. Operational equivalence up to typeable output
for the remaining fragment would require using option types, but we do not pur-
sue it here, rather we rely on a restriction to terminating programs for semantical
correctness. Under such restrictions, however drastic, this translation gives expres-
sions that are particularly simple and therefore potentially useful to verify some
properties.

3 Haskell2Isabelle

The Hets function Haskell2Isabelle supports the translation of simple Haskell pro-
grams to HOLCF and, with more restriction, to HOL. Not all the syntactical features
used in the Prelude and main libraries are covered. Some of the most noticeable
limitations are those related to built-in types, pattern-matching, local definitions,
import and export. There are additional and more substantial restrictions in the
case of HOL, related to termination and recursion. Each of the translations relies
on a base theory. These are Isabelle theory files, respectively HsHOLCF, extending
HOLCF, and HsHOL, extending HOL, which are included in the Hets distribution.
Each of them provides definitions and axiomatizations of notions that are used in
the corresponding translation — notably equality.

Information for the use of Hets may be found in [Mos06] and a general outlook
in [Mos06]. The Haskell-to-Isabelle translation requires essentially GHC, Isabelle
2006 and Programatica — with respect to the latter, both analysis and translation
functions in Hets make use of its modules. The command to run the application is

hets -v[1–5] -t Haskell2Isabelle[HOLCF — HOL] -o thy filename
where options set verbosity, target logic and name of the output file. The input file
(last argument) must be a GHC source (hs extension). The Haskell program gets
analyzed and translated. The result of a successful execution is an Isabelle theory
file (thy extension) depending on the corresponding base theory.

The internal representation of Haskell in Hets (module Logic Haskell and par-
ticularly HatAna) is essentially the same as in Programatica, whereas the inter-
nal representation of Isabelle (module Logic Isabelle and particularly IsaSign) is a
Haskell reworking of the ML definition of Isabelle own base logic, extended in order
to allow for a straightforward representation of HOL and HOLCF.

Haskell programs as well as Isabelle theories are internally represented as Hets
theories — each of them a data-structures formed by a signature and a set of sen-
tences, fitting a theoretical framework described in [Mos05]. Each translation, de-
fined as composition of the signature translation with the translation of all sentences,
has the structure of a morphism from theories in the internal representation of the
source language to those in the representation of the target language. The dis-
tribution module Haskell2IsabelleHOLCF contains the main function, dependent
on the target logic. The module IsaPrint provides the essential functions for the
pretty-printing of Isabelle theories.

The following gives a list of reserved names, i.e. the names that are used in order
to either rename or name automatically variables and constants in the translations.
1) Type variables, in the translation to HOL: ’vX ; any name terminating with
’XXn where n is an integer. 2) Term variables, in both translations: pXn, qXn,

4



with n integer. 3) Constants, in the translation to HOL: strings obtained by joining
together names of defined functions, using X as end sequence and separator.

3.1 HOLCF: Type signature

The translation to HOLCF keeps into account partiality, i.e. the fact that a function
might be undefined for certain values, either because definition is missing, or because
the program does not terminate. It also keeps into account laziness, i. e. the
fact that by default function values in Haskell are passed by name and evaluated
only when needed. Essentially, we are following the main lines of the “crude”
denotational semantics for lazy evaluation in [Win93], pp. 216–217. Raising an
exception is different from running forever, and both are different from stopping
short of evaluation. However, from the point of view of the printable output, these
behaviours are similar and can be treated semantically as such, i.e. using one and
the same bottom element.

Each type in Isabelle has a sort, defined by the set of the classes of which it is
member. Haskell type variables are translated to HOLCF ones, of class pcpo. Each
built-in type is translated to the lifting of its corresponding HOL type. Properly
covered are Haskell booleans and unbounded integers, associated respectively to
HOL booleans and integers. Bound integers and floating point numbers would need
low-level modelling, and have not been covered. Bounded integers in particular are
simply treated as unbounded in the translation. The HOLCF type constructor lift
is used to lift HOL types to flat domains. In the case of booleans, we can use type tr,
defined as equal to bool lift in HOLCF. In the case of integers, we use dInt, defined
in HsHOLCF to equal int lift. The types of Haskell functions and product are
translated, respectively, to HOLCF function spaces and lazy product — i.e. such
that ⊥ = (⊥ ∗ ⊥) 6= (⊥ ∗′ a) 6= (′a ∗ ⊥), consistently with lazy evaluation. Type
constructors are translated to corresponding HOLCF ones (noticeably, parameters
precede type constructors in Isabelle syntax). In particular, lists are translated
to the domain llist defined in HsHOLCF. Function declarations are translated to
HOLCF ones (keyword consts). Names (for types as well as for terms) are translated
by a function (t here) that preserves them, up to avoidance of clashes with HOLCF
keywords. Translation of types (minus mutual recursion) may be summed up as
follows:

dae = ′at :: pcpo
dBoole = tr
dIntegere = dInt
da → be = dae → dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae llist
dTyCons a1 . . . ane = da1e . . . dane TyConst

In HOL, datatype declarations define types of class type by keyword datatype; in
contrast, in HOLCF, they define types of class pcpo (i.e. domains) by keyword
domain (so we also may call them domain declarations). Each recursive datatype
declaration in Haskell is translated to the corresponding one in HOLCF. The
translation of mutually recursive datatypes relies on specific Isabelle syntax

5



(keyword and), as in the next example.

data AType a b = ABase a | AStep (AType a b) (BType a b)
data BType a b = BBase b | BStep (BType a b) (AType a b)

This translates to HOLCF as the following.

domain (′a :: pcpo,′ b :: pcpo) BType = BBase (BBase 1 ::′ b) |
BStep (BStep 1 :: (′a,′ b) BType) (BStep 2 :: (′a,′ b) AType)

and (′a :: pcpo,′ b :: pcpo) AType = ABase (ABase 1 ::′ a) |
AStep (AStep 1 :: (′a,′ b) AType) (AStep 2 :: (′a,′ b) BType)

Notably, domain declarations require an explicit introduction of destructors. Both
translations (to HOL as well as to HOLCF) take care automatically of the order of
datatype declarations — this is needed, insofar as, differently from Haskell, Isabelle
requires them to be listed according to their order of dependency.

3.2 HOLCF: Sentences

Each Haskell function definition is translated to a corresponding one. Non-recursive
definitions are translated to standard ones (keyword defs), whereas the translation of
recursive definitions relies on the fixrec package. Lambda abstraction is translated as
continuous abstraction (LAM ), and function application as continuous application
(the dot operator) — these notions coincide with the corresponding, HOL-defined
ones, whenever their arguments are continuous.

Terms of built-in type (boolean and integers) are translated to lifted HOL
values, using the HOLCF-defined lifting function Def. The bottom element ⊥ is
used for all undefined terms. The following operator, defined in HsHOLCF, is used
to map binary arithmetic functions to lifted functions over lifted integers.

fliftbin :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a lift → ′b lift → ′c lift)
fliftbin f == LAM yx. (flift1 (%u. flift2 (%v. f v u))) · x · y

Booleans are translated to values of tr — TT, FF and ⊥, and boolean connec-
tives are translated to the corresponding HOLCF-defined lifted operators. HOLCF-
defined If then else fi and case syntax are used to translate, respectively, conditional
and case expressions. There are some restrictions, however, on the latters, due to
limitations in the translation of patterns (see section 3.5); in particular, the case
term should always be a variable, and no nested patterns are allowed.

The translation of lists and list constructors relies on the following HsHOLCF -
defined datatype.

domain ′a llist = lNil | lCons (lazy lHd ::′ a) (lazy lT l ::′ a llist)

Under the given interpretation, a stream as well as an undefined list function take
value ⊥. This may be regarded as a semantical weakness.

Haskell allows for local definitions by means of let and where expressions. The let
expressions where the left-hand side is a variable are translated to similar Isabelle

6



ones; other let expressions (i.e. those containing patterns on the left hand-side)
and the where expressions are not covered. The translation of terms (minus mutual
recursion) may be summed up, essentially, as follows:

dx :: ae = xt :: dae
dce = ct

d\x → fe = LAM xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = FIX ft. ft · dae . . . · dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe

In HOLCF all recursive functions can be defined by fixpoint operator — a function
that, given as argument the defining term abstracted of the recursive call name,
returns the corresponding recursive function. Coding this directly turns out to be
rather cumbersome, particularly in the case of mutually recursive functions, where
tuples of defining terms and tupled abstraction would be needed. In contrast, the
fixrec package allows us to handle fixpoint definitions in a way much more similar
to ordinary Isabelle recursive definitions, providing with friendly syntax for mutual
recursion, as well. Continuing the example,

fun1 :: (a → c) → (b → d) → AType a b → AType c d

fun1 f g k = case k of
ABase x → ABase (f x)
AStep x y → AStep (fun1 f g x) (fun2 f g y)

fun2 :: (a → c) → (b → d) → BType a b → BType c d

fun2 f g k = case k of
BBase x → BBase (g x)
BStep x y → BStep (fun2 f g x) (fun1 f g y)

this code translates to HOLCF as follows:

consts

fun1 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →
(′a :: pcpo,′ b :: pcpo) AType → (′c :: pcpo,′ d :: pcpo) AType

fun2 :: (′a :: pcpo →′ c :: pcpo) → (′b :: pcpo →′ d :: pcpo) →
(′a :: pcpo,′ b :: pcpo) BType → (′c :: pcpo,′ d :: pcpo) BType

fixrec fun1 = (LAMf. LAMg. LAMk. case k of
ABase · pX1 => ABase · (f · pX1) |
AStep · pX1 · pX2 =>
AStep · (fun1 · f · g · pX1) · (fun2 · f · g · pX2))

and fun2 = (LAMf. LAMg. LAMk. case k of
BBase · pX1 => BBase · (g · pX1) |
BStep · pX1 · pX2 =>
BStep · (fun2 · f · g · pX1) · (fun1 · f · g · pX2))

7



The translations take care automatically of the fact that, in contrast with Haskell,
Isabelle requires patterns in case expressions to follow the order of datatype decla-
rations.

In the Programatica representation of Haskell, class information about type
parameters is given by adding dictionary parameters to normal ones. These are
eliminated by the translation, as class information in Isabelle may be given by
annotating arguments. In particular, each definition includes the type of the defined
function complete with class annotation, in order to allow for overloading (a detail
we omitted to show for the sake of readability in some of the examples here).

3.3 HOL: Type signature

The translation to HOL is semantically rather crude, it takes into account neither
partiality nor laziness, and so, for soundness, it requires all functions in the program
to be total ones.

An account of partiality could be obtained using the option type constructor
to lift types, along lines similar to those followed in HOLCF with lift. Here in-
stead we are just mapping Haskell types to corresponding, unlifted HOL ones —
so for booleans and integers. Type variables are of class type. HOL function type,
product and list are used to translate the corresponding Haskell constructors. The
translation of types (minus mutual recursion) may be summed up as follows.

dae = ′at :: type
dBoole = bool
dIntegere = int
da → be = dae ⇒ dbe
d(a, b)e = dae ∗ dbe
d[a]e = dae list
dTyCons a1 . . . ane = da1e . . . dane TyConst

Recursive and mutually recursive data-types declarations are translated to HOL as
datatype declaration.

datatype (′a,′ b) BType = BBase ′b |
BStep ((′a,′ b) BType) ((′a,′ b) AType)

and (′a,′ b) AType = ABase ′a |
AStep ((′a,′ b) AType) ((′a,′ b) BType)

Metalevel features are essentially shared with the HOLCF translation.

3.4 HOL: Sentences

Non-recursive definitions are treated in an analogous way to the translation into
HOLCF. Standard lambda-abstraction (%) and function application are used here
instead of continuous ones. Partial functions, and particularly case expressions with
incomplete patterns, are not allowed. The translation of terms (minus recursion and
case expressions) may be summed up as follows:

8



dx :: ae = xt :: dae
dce = ct

d\x → fe = % xt. dfe
d(a, b)e = (dae, dbe)
df a1 . . . ane = ft dae . . . dane

where f :: τ, ft :: dτe
dlet x1 . . . xn in expe = let dx1e . . . dxne in dexpe

Recursive definitions set HOL and HOLCF apart. In HOL a distinction is drawn,
and syntactically highlighted, between primitive recursive functions (introduced by
keyword primrec) and generic recursive ones (by keyword recdef ). Termination
is guaranteed for each of the formers, by the fact that recursion is based on the
datatype structure of one of the parameters. In contrast, termination is not a trivial
matter for the latters. A strictly decreasing measure must be provided, associated
to the parameters of the defined function. This requires a degree of ingenuity that
cannot be easily dealt with automatically. For this reason, the translation to HOL
is restricted to primitive recursive functions.

Mutual recursion is allowed for under additional restrictions — more precisely:
1) all the functions involved are recursive in the first argument; 2) recursive argu-
ments are of the same type in each function. The translation of mutually recursive
functions a → b, . . . a → d introduces a new function a → (b ∗ . . . ∗ d) recursively
defined, for each case pattern, as the product of the values correspondingly taken
by the original, non-recursively defined ones.

fun3 :: AType a b → (a → a) → AType a b

fun3 k f = case k of
ABase a → ABase (f a)
AStep a b → AStep (fun4 a) b

fun4 :: AType a b → AType a b

fun4 k = case k of
AStep x y → AStep (fun3 x (\z → z)) y
ABase x → ABase x

These functions, satisfying the restrictions, will translate to the following.

consts

fun3 :: (′a :: type,′ b :: type)AType ⇒ (′a :: type ⇒′ a :: type) ⇒
(′a :: type,′ b :: type)AType

fun4 :: (′a :: type,′ b :: type)AType ⇒ (′a :: type ⇒′ a :: type) ⇒
(′a :: type,′ b :: type)AType

fun3 Xfun4 X :: (′a :: type,′ b :: type)AType ⇒
((′aXX1 :: type ⇒′ aXX1 :: type) ⇒
(′aXX1 :: type,′ bXX1 :: type)AType)∗
((′aXX2 :: type ⇒′ aXX2 :: type) ⇒
(′aXX2 :: type,′ bXX2 :: type)AType)

9



defs

fun3 def : fun3 == %k f. fst ((fun3 Xfun4 X ::
(′a :: type,′ b :: type)AType ⇒ ((′a :: type ⇒′ a :: type)
⇒ (′a :: type,′ b :: type)AType) ∗ ((unit ⇒ unit) ⇒
(unit, unit)AType)) k) f

fun4 def : fun4 == %k f. snd ((fun3 Xfun4 X ::
(′a :: type,′ b :: type)AType ⇒ ((unit ⇒ unit) ⇒ (unit, unit)AType)∗
((′a :: type ⇒′ a :: type) ⇒ (′a :: type,′ b :: type)AType)) k) f

primrec

fun3 Xfun4 X (ABase pX1) = (%f. ABase (f pX1),
%f. ABase pX1)

fun3 Xfun4 X (AStep pX1 pX2) =
(%f. AStep (snd (fun3 Xfun4 X pX1) f) pX2,
%f. AStep (fst (fun3 Xfun4 X pX1) f) pX2)

Calls of the recursive functions in the non-recursive definitions are annotated with
type where exceeding type variables are instantiated with the unit type, as required
by Isabelle in order to avoid definitions from which inconsistencies are derivable.

3.5 Patterns

Support of patterns in definitions and case expressions is more restricted in Isabelle
than in Haskell. Nested patterns are overall disallowed. In case expressions, the case
term is required to be a variable. Both of these restrictions apply to our translations.
A further Isabelle limitation concerning case expressions — sensitiveness to pattern
order — is dealt with automatically. Similarly, wildcards — something unknown
to Isabelle — are dealt with, as well as, in HOLCF, incomplete patterns. The
exclusion of nested patterns complicate the translation of some specific ones — in
fact, guarded expressions and list comprehension are not covered; their use should
be avoided here, using conditional expressions and map instead.

Multiple function definitions using top level pattern matching are translated
as definitions based on a single case expression; this is due to HOL more than to
HOLCF. In fact, multiple definitions in Isabelle are only allowed with the syntax
of recursive ones. However, in HOL primitive recursive definitions, patterns are
allowed for only in one parameter. In order to translate definitions with more
patterns as arguments, without resorting to tuples and to more complex syntax
(recdef instead of primrec) we translate multiple definitions by top level pattern
matching as definitions by case construct.

ctl :: Bool → Bool → Bool → Bool
ctl False a False = a
ctl T rue a False = False
ctl False a True = True
ctl T rue a True = a

This translates to HOL as the following.

10



consts ctl :: bool ⇒ bool ⇒ bool ⇒ bool

defs
ctl def : ctl == %qX1.%qX2.%qX3. case qX1 of

False ⇒ case qX3 of
False ⇒ qX2 |
True ⇒ True |

True ⇒ case qX3 of
False ⇒ False |
True ⇒ qX2

This example does not go through with the translation to HOLCF, as booleans
there are translated to values of tr, which is not a recursive datatype. The
following gives an alternative that can be handled (a new datatype is used instead
of booleans).

data Two = Fx | Tx
ctlx :: Two → Two → Two → Two
ctlx Fx a Fx = a
ctlx Tx a Fx = Fx
ctlx Fx a Tx = Tx
ctlx Tx a Tx = a

This translates to HOLCF as follows.

domain Two = Fx | Tx
consts ctlx :: Two → Two → Two → Two

defs
ctlx def : map5 == LAM qX1 qX2 qX3. case qX1 of

Fx ⇒ case qX3 of
Fx ⇒ qX2 |
Tx ⇒ Tx |

Tx ⇒ case qX3 of
Fx ⇒ Fx |
Tx ⇒ qX2

In case expressions as well as in top level pattern matching definitions, wildcards
may be used — though not in nested position. Incomplete patterns are translated
to HOLCF using ⊥ as default value.

3.6 Classes

Haskell defined classes are translated to Isabelle as classes with empty axiomatiza-
tion. Isabelle allows classes with no more than one type parameter, therefore our
translations can support only them — it might be possible to handle more than one
parameter using tuples, but this would surely involve considerable complications
dealing with conditional instances.

11



Instance declarations are translated to corresponding ones in Isabelle. Is-
abelle instances in general require proofs that class axioms are satisfied by the
types, but as long as there are no axioms the proofs are trivial and can be
handled automatically. Function declarations associated with Haskell classes are
translated as independent function declarations with appropriate class annota-
tion. Function definitions associated with instance declarations are translated
as overloaded function definitions, relying on class annotation of the typed variables.

classClassA a where
abase :: a → Bool
astep :: a → Bool

instance (ClassA a, ClassA b) ⇒ ClassA (AType a b) where

abase x = case x of
ABase u → True
→ False

This code translates to HOLCF as follows.

axclass ClassA < pcpo
instance AType :: (pcpo, ClassA, pcpo, ClassA) ClassA

by intro classes

consts
abase :: ′a :: {ClassA, pcpo} → tr
astep :: ′a :: {ClassA, pcpo} → tr
default abase :: ′a :: {ClassA, pcpo} → tr
default astep :: ′a :: {ClassA, pcpo} → tr

defs

AType abase def :
abase :: (′a :: {ClassA, pcpo},′ b :: {ClassA, pcpo}) AType → tr

== LAMx. case x of
ABase · pX1 ⇒ TT |
AStep · pX2 · pX1 ⇒ FF

AType astep def :
astep :: (′a :: {ClassA, pcpo},′ b :: {ClassA, pcpo}) AType → tr

== default astep

Similarly, it translates to HOL.

axclass ClassA < type

instance AType :: ({type, ClassA}, {type, ClassA}) ClassA
by intro classes

12



consts
abase :: ′a :: {ClassA, type} ⇒ bool
astep :: ′a :: {ClassA, type} ⇒ bool
default abase :: ′a :: {ClassA, type} ⇒ bool
default astep :: ′a :: {ClassA, type} ⇒ bool

defs

AType abase def :
abase :: (′a :: {ClassA, type},′ b :: {ClassA, type}) AType ⇒ bool

== %x. case x of
ABase pX1 ⇒ True |
AStep pX2 pX1 ⇒ False

AType astep def :
astep :: (′a :: {ClassA, type},′ b :: {ClassA, type}) AType ⇒ bool

== default astep

3.7 Equality

At the moment equality is the only covered built-in class. The axiomatizations
provided, respectively, in HsHOLCF and HsHOL are based on the abstract
definition of the equality and inequality functions [PJ03]. In both theories, Eq is
declared as a subclass of type — in HsHOLCF this is done in order to instantiate
it with lifted types.

consts
hEq :: (′a :: Eq)lift → ′a lift → tr
hNEq :: (′a :: Eq)lift → ′a lift → tr

axioms
axEq : ALLx.(hEq · p · q = Defx) =

(hNEq · p · q = Def(∼ x))

The instantiation of equality (consequently, of inequality) for boolean (and similarly
for integer) is obtained by lifting HOL equality so that ⊥ is returned whenever one
of the argument is undefined.

tr hEq def : hEq == fliftbin (%(a :: bool) b. a = b)

In HsHOL the axiomatization reflects the restriction to terminating programs.

consts
hEq :: (′a :: Eq) ⇒ ′a ⇒ bool
hNEq :: (′a :: Eq) ⇒ ′a ⇒ bool

axioms
axEq : hEq p q == ∼ hNEq p q

The instantiation of hEq for boolean and integer is simply taken to be HOL equality.

13



3.8 Monads

Isabelle does not allow for classes of type constructors, hence a problem in repre-
senting monads. We could deal with this problem relying on an axiomatization of
monads that allows for the representation of monadic types as an axiomatic class,
as presented in [Lue05]. Monadic types should be translated to newly defined types
that satisfy monadic axioms. This would involve defining a theory morphism, as an
instantiation of type variables in the theory of monads. We are planning to rely on
AWE [BJL06], an implementation of theory morphism on top of Isabelle base logic
that may be used to extend HOL as well.

4 Conclusion

The following is a list of features that are covered by our translations.

• predefined types: boolean, integer.

• predefined type constructors: function, cartesian product, list.

• declaration of recursive datatype, including mutually recursive ones.

• predefined functions: equality, booelan constructors, connectives, list construc-
tors, head and tail list functions, arithmetic operators.

• non-recursive functions, including conditional, case and let and expressions
(with restriction related to use of patterns).

• use of incomplete patterns (in HOLCF) and of wildcards in case expressions.

• total primitive recursive functions (in HOL) and partial recursive ones (in
HOLCF), including mutual ones (with restrictions in the HOL case).

• single-parameter class and instance declarations.

The shallow embedding approach makes it possible to take the most out of the
automation currently available on Isabelle, especially in HOL. Further work should
include extending the translation to cover the whole of the Haskell Prelude. We
would also be interested in carrying out an extension to cover P-logic [Kie02], a
specification formalism for Haskell programs included in the Programatica toolset.

References

[ABB+05] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell. Verifying
Haskell programs using constructive type theory. In ACM-SIGPLAN
05, 2005.

[BJL06] M. Bortin, E. B. Johnsen, and C. Lueth. Structured formal develop-
ment in Isabelle. Nordic Journal of Computing, 2006.

[HHJK04] T. Hallgren, J. Hook, M. P. Jones, and D. Kieburtz. An overview of
the Programatica toolset. In HCSS04, 2004.

[HMW05] B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes
in Isabelle-HOLCF. Research paper, OGI, 2005.

14



[HT95] S. Hill and S. Thompson. Miranda in Isabelle. In Proceedings of the
first Isabelle users workshop, number 397 in Technical Report, pages
122–135. University of Cambridge Computer Laboratory, 1995.

[Kie02] R. Kieburtz. P-logic: property verification for haskell programs. Tech-
nical report, OGI, 2002.

[LP04] J. Longley and R. Pollack. Reasoning about CBV programs in Isabelle-
HOL. In TPHOL 04, number 3223 in LNCS, pages 201–216. Springer,
2004.

[Lue05] C. Lueth. Modular modelling with monads. In Methods of Cate-
gory Theory in Software Engineering. Technische Universitaet Dresden,
2005.

[MMLW03] T. Mossakowski, C. Maeder, K. Luettich, and S. Woelfl. The Hetero-
geneous Tool Set, 2003.

[MNvOS99] O. Mueller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF =
HOL + LCF. Journal of Functional Programming, 1999.

[Mos05] T. Mossakowski. Heterogeneous specification and the heterogeneous
tool set, Habilitation Thesis, 2005.

[Mos06] T. Mossakowski. Hets user guide. Tutorial, Universitaet Bremen, 2006.

[Pau94] L. C. Paulson. Isabelle: a generic theorem prover, volume 828.
Springer, 1994.

[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge
University Press, 2003.

[Tho89] S. Thompson. A logic for Miranda. Formal Aspects of Computing, 1,
1989.

[Tho92] S. Thompson. Formulating Haskell. In Functional Programming.
Springer, 1992.

[Tho94] S. Thompson. A logic for Miranda, revisited. Formal Aspects of Com-
puting, 3, 1994.

[Wen05] M. Wenzel. Using axiomatic type classes in Isabelle. Tutorial, TU
Muenchen, 2005.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

15


