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N, respectively. In this case, the

theorem link part holds trivially, and only the conservativity, monomorphicity
or definitionality statement is relevant.

We also allow for annotating nodes with cons, mono or def . This shall ex-
press that the trivial theorem link using the unique signature morphism from
the empty signature6 could be annotated with the same word7. Thus, the
annotation cons for a node means that there is a model of the node (consis-
tency), mono means that the node has exactly one model up to isomorphism
(i.e. it is monomorphic), and def means that the node has exactly one model
(the latter will occur only rarely).

4.3 Translating Development Graphs
along Institution Comorphisms

Given a model-isomorphic simple theoroidal institution comorphism R =
(Φ, α, β) : I → J , we can extend this comorphism to a translation of devel-
opment graphs over I into development graphs over J in the following way:

Given a development graphDG over I, let R(DG) have the same nodes and
links as DG (for clarity, given a node N ∈ DG, we call the corresponding node
R(N) ∈ R(DG), and similarly for definition links). The associated signatures,
local axioms and signature morphisms differ, of course:

• if N ∈ DG, then ΣR(N) = Sig(Φ(ΣN )), and

ΨR(N) = αΣN (ΨN ) ∪ Ax(Φ(ΣN ))

• the signature morphisms decorating a link L are translated along Φ, and
intermediate signatures Σ are replaced with Sig(Φ(Σ)), yielding a link
R(L).

Theorem 4.14. Given a model-isomorphic simple theoroidal institution co-
morphism R = (Φ, α, β) : I→J and a development graph DG over I, for each
N ∈ DG, the isomorphism

βΣN : Mod(ΣN)→Mod(Φ(ΣN ))

restricts to the isomorphism

βΣN : Mod(N)→Mod(R(N))

Proof. First, note that indeed Mod(R(N)) ⊆ Mod(Φ(ΣN )), because ΨR(N)

includes Ax(Φ(ΣN )). We now proceed by induction over DG. Hence, it suffices
to show for each M ∈Mod(Φ(Σ)):
6 We here assume that the empty signature is initial.
7 Here we tacitly assume that there is some special node having the initial signature

and the empty set of axioms.
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1. βΣN (M) |= ΨN iff M |= ΨR(N),
2. for any ingoing definition link L into N , βΣN (M) satisfies L iff M satisfies

R(L).

Both can be shown in a straightforward way, using the satisfaction condition
of the comorphism, naturality and isomorphism property of β and the fact
that for any I-signature morphism σ, Φ(σ) is a theory morphism. ��

Theorem 4.15. Given a model-isomorphic simple theoroidal institution co-
morphism R = (Φ, α, β) : I→J and a development graph DG over I, let L be
a theorem link over DG. Then

DG |= L iff R(DG) |= R(L)

Proof. By Theorem 4.14 and Remark 4.13. ��

Note that with this translation of development graphs along comorphisms,
new local axioms coming from Ax(Φ(ΣN )) are often partly repeated. One can
optimize this by adding at each node only those axioms from Ax(Φ(ΣN )) that
are not already present via links from other nodes.

4.4 Proof Rules for Development Graphs

In this section, we introduce logic-independent proof rules for development
graphs. These rely on a logic-specific entailment relation for basic specifica-
tions as introduced in Chap. 1, as well as on logic-specific proof rules for
conservativity and freeness, which will be covered in Sect. 4.6.

The proof rules work on judgements of the form DG � L, where DG is
a development graph and L is a theorem link (of any kind) over DG. As
in the calculus for basic specifications, we follow a natural deduction style
presentation and additionally use a graph-grammar like notation. We hope
that this is still largely self-explanatory while improving readability.

The proof rules for development graphs presented below are typically ap-
plied backwards: given proof goal in form of a theorem link relative to some
development graph, find a rule whose conclusion matches the proof goal, and
recursively prove the premises of the rule. Note that within one rule, the
judgements may refer to different development graphs. Often, the premises
are formulated over development graphs that are larger than that for the con-
clusion. This means that applying rules backwards possibly adds some new
nodes and edges to the development graph.

The rules allow for decomposing global theorem links into simpler ones.
In a first step, one typically tries to get rid of hiding theorem links and to de-
compose global into local theorem links. This is done by applying the hiding
decomposition rules. Thereby, new conservativity proof goals can be gener-
ated, which need to be tackled by the conservativity rules. The simple de-
composition rules then allow for proving global theorem links when there is




