
Hets API for VSE

Bruno Langenstein

April 17, 2008

1 Introduction

The API to be described here is written with the following scenario in mind. Hets
will read an input file containing the specification and display the corresponding
development graph to the user, who can inspect the graph and modify it in order
to discharge the proof obligations. The modifications are either done within Hets
according to the development graph calculus or by discharging local proof goals
with an external theorem prover. The new API will allow to use also VSE as an
external prover.

Unlike the other provers VSE will not terminate after having proven the given
goals. Once started VSE will continue to run in parallel with Hets until the user
decides to stop it. VSE will retrieve all informations about the development graph
from Hets as far as they can be translated to VSE. Then VSE presents its repre-
sentation of the development graph to the user.

During their common runtime VSE and Hets are kept synchronised about the
prove state. Ideally a change to the prove state in one of these tools is immediately
reflected in the other tool. At least the user will be able to synchronise the tools
manually. If a new proof obligation is generated in Hets, it will show up in the
corresponding lemma base in VSE (eventually). If any formula is marked as proved
in Hets, VSE will be notified and mark the formula as proved in its own lemma
base. VSE in turn will notify Hets about the proof obligations (and lemmas) VSE
has been able to prove. This mechanism allows the user to switch freely between
VSE and Hets.

In order to minimise the proof effort on the user side, VSE may store its proof
state when it is stopped and reuse this state when Hets and VSE are started again
later. In all cases VSE will retrieve the current development graph from VSE during
its initialisation. Then VSE will try to check, whether the old stored state (if any)
matches the current state retrieved from Hets.

We assume that Hets provides an interface for VSE to call commands and get
responses. Ideally, the commands can be called anytime while Hets is running.
However it may be necessary to block the execution in certain situations. If it
is unfeasible to implement this, the Hets GUI may provide functionality to start
interpretation of commands from VSE.

The interface between Hets and VSE is considered to consist of at least two
channels of ASCII text streams, one for the commands from VSE to Hets, the other
one of the responses in the opposite direction. The concrete implementation may
use standard input and output, TCP/IP, pipes etc. But this will not be relevant in
the following.

If required, there may be a second pair of channels with which VSE provides the
same or a similar API to Hets. This way VSE can be informed about changes in
the prove state of Hets immediately. If otherwise this second pair is missing, the
user always has to trigger VSE to synchronise its proof state with Hets explicitly.

1

VSE supports1 first-order Dynamic Logic with equality and generatedness con-
straints, but without subsorting. First-order Dynamic Logic is an extension of first
order logic with two additional constructs: box and diamond formulas, modal op-
erators with programs. The programs are expressed in an imperative programming
language with (recursive) procedures. Specifications have to be translated into Dy-
namic Logic (or a sublogic) before being handed over to VSE.

In contrast to the provers, for which a Hets interface has been developed by
now, VSE is capable of handling structured specifications. At the same time VSE is
an interactive prover. Therefor, the user may need to find lemmas and axioms when
conducting a proof. It is more easier to look up the appropriate formulas in the orig-
inal structure of the development graph than for example in a large Grothendieck
institution. Therefore, the interface to VSE should allow for transferring the struc-
ture of the development graph.

VSE supports the concept of abstract data type refinements that use procedures
to implement the functions and predicates of an abstract data type represented by a
first-order logic theory, called export specification. The implementation procedures
contain programs using functions and predicates defined in another specification
called import specification, which is supposed to be less abstract. Our aim is to
be able to work with abstract data type refinements not only in VSE, but also
in Hets. To this end we suggest to represent the refinement by a comorphism
from first-order logic to Dynamic Logic, that maps the functions and predicates to
procedures. The refinement in VSE is based on congruence classes on the carrier sets
of the import specification. This means that an element of the export specification
can have several different representations in the implementation. This aspect can
be realised by including a mapping into the comorphism, that maps each sort to a
procedure that computes congruence relation (in addition to the mapping of sorts
to sorts). Furthermore, the comorphism has to associate each export sort with
a so called restriction. This is a procedure that is supposed to terminate only
when provided with arguments, that are valid implementations. This way import
specification carrier sets can contain “garbage”, i. e. elements that are not useful
as representations of export specification elements.

If VSE finds a theorem link with such a morphism, it will generate the proof
obligations for an abstract data type refinement.

2 Syntax and Data Types of the API

2.1 Syntax

In this section we describe the syntax used to represent the basic data types. It is
based on the Lisp data types lists and symbols written in Lisp syntax. A symbol is
identified by and represented as a sequence of ASCII letters (a, b, c, d, e, f, g, h,
i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, C, D, E, F, G, H, I, J, K, L, M, N,
O, P, Q, R, S, T, U, V, W, X, Y, Z), digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), the characters
hyphen (-), underscore (), left curly bracket2 ({) and right curly bracket (}).

Upper case and lower case letters are not distinguished. Thus all, aLl and ALL
are all representations of the same symbol.

A list is written as a sequence of its elements separated by white space (an
arbitrary long sequence of the characters space, line feed, carriage return, tabulator)
and enclosed in a pair of parenthesises ’(’ and ’)’. The elements may be symbols or
lists.

1It also can handle a variant of temporal logic, which could be considered for a later extension
of this API.

2Curly brackets can be used as a substitute for square brackets ([and]) occurring in generic
Hets theories.

2

Thus a valid S-expression is (procedure p (in x) (in y) (out r)).

2.2 Conventions

In this section we describe the conventions used throughout the rest of this docu-
ment.

In most situations only a subset of valid S-expressions can be used. Therefore,
we ’subtype’ S-expressions, i.e. we will define types, that represent subsets of S-
expressions. Each type ty will be introduced in the following form:

ty < super [Type]
This way ty is defined to be a subtype of super. If we omit the < clause,

we assume the default < s-expression, s-expression standing for the type of all s-
expressions. We also will make use of type expressions of the form (list ty) for list
containing only elements of type ty.

For each type ty we introduce a set of constructors in the following form:

cons v1 : t1 v2 : t2 . . . vn: tn → ty [Constructor]
The meaning is that (cons v1 v2 ...vn) is to be considered an S-expressing

of type ty, if the variables v1 , v2 , . . . , vn are substituted by S-expressions of the
corresponding types t1, t2,. . . tn. For a given type ty only those S-expressions are
considered to be a member of ty, if they either belong to a subtype of ty or they
accord to one of the constructors for ty described in this paper. So we are actually
defining freely generated data types.

In order to keep the description concise, we introduce a convention to extend
constructors defined on a subtype ty of a type super to constructors on super in the
following way. If a constructor cons is defined as

cons v1 : t1 v2 : t2 . . . vi : ti. . . vn: tn → ty [Constructor]
with ti = ty for some ti ∈ {t1, t2, . . . , tn} then the following constructor is

defined as well:

cons v1 : t1 v2 : t2 . . . vi : super . . . vn: tn → super [Constructor]
with ti = ty for some ti ∈ {t1, t2, . . . , tn}

2.3 Signatures and Their Entries

A signature represents a collection of signature entries. There are four kinds of
signature entries: some are for sorts, some for function symbols, some for predicate
symbols and some for procedure symbols.

2.3.1 Signature Entries

sigentry [Type]
This is the type of signature entries.
The constructors for this type are:

sorts {srt: symbol}∗ → sigentry [Constructor]
A signature entry is generated, that defines each srt to be a sort.

3

predicate p: symbol srts: (list symbol) → sigentry [Constructor]
A signature entry is generated, that defines a predicate named p with argument

sorts srts.

function f : symbol argsrts: (list symbol) srt → sigentry [Constructor]
A signature entry is generated, that defines the symbol f to be a function symbol

with argument sorts as in argsrts and srt as the result sort.

procedure p: symbol {var: procparam}∗ → sigentry [Constructor]
A signature entry is generated, that defines a procedure symbol.

procparam [type]
This type is used to represent the procedure parameters. It identifies the type of

the parameter and whether it is an input parameter (value parameter) or an output
parameter (result parameter).

The constructors for this type are:

in srt: symbol → procparam [Constructor]
A procedure parameter is generated for input with sort srt.

out srt: symbol → procparam [Constructor]
A procedure parameter is generated for output with sort srt.
Note: Reference parameters are not supported.
Currently we do not support partial functions and subsorting.

2.3.2 Signatures

signature [Type]

signature {se: sigentry}∗ → signature [Constructor]
The signature containing the signature entries se is generated.

2.4 Terms

term [Type]

varterm v : symbol → term [Constructor]

fapply f : symbol {arg: term}∗ → term [Constructor]

4

2.5 Formulas

2.5.1 Boolean Formulas

boolean < formula [Type]
We introduce the subtype of boolean formulas, because we will only allow this

type of formulas as conditions in program constructs. So we exclude quantified and
Dynamic Logic formulas from programs.

true → boolean [Constructor]
This is the constructor for the formula true.

false → boolean [Constructor]
This is the constructor for the formula false.

eq trm1 : term trm2 : term → boolean [Constructor]
This is the constructor for an equation between the terms trm1 and trm2 .

papply p: symbol {arg: term}∗ → boolean [Constructor]
The predicate p applied on the arguments arg .

not fma: boolean → boolean [Constructor]
Negation of fma

and {fma: boolean}∗ → boolean [Constructor]
Conjunction of the formulas fma.

or {fma: boolean}∗ → boolean [Constructor]
Disjunction of the formulas fma.

implies fma1 : boolean fma2 : boolean → boolean [Constructor]
Implication of the formulas fma1 and fma2 .

equiv fma1 : boolean fma2 : boolean → boolean [Constructor]
Equivalence of the formulas fma1 and fma2 .

5

2.5.2 Programs

program [Type]

abort → program [Constructor]
This constructs the abort command, a command that never terminates.

skip → program [Constructor]
This constructs the skip command, a command that terminates and leaves the

program state unchanged.

assign lhs: symbol rhs: term → program [Constructor]
This constructs an assignment command, which changes the current value of

variable lhs to the value of the term rhs.

vardecl T [Type]
his type contains declarations of single variables as they can occur in the program

construct vblock (see below).

vardecl var : symbol srt: symbol trm: term → vardecl [Constructor]
This constructs a declaration of variable var of sort str , which is to be initialised

with the value of term trm.

vardecl-indet var : symbol srt: symbol → vardecl [Constructor]
This constructs an indeterministic declaration of variable var of sort str , which

is to be initialised indeterministically with an arbitrary value.

vblock vdls: (list typedvar) prg : program → program [Constructor]
This constructs a variable declaration block. The scope of the variables de-

clared in vdls is the program prg . The variables are initialised according to their
declarations before prg is executed.

seq prg1 : program prg2 : program → program [Constructor]
This constructs the sequential composition of the program prg1 and prg2 .

if cond : boolean thenprg : program elseprg : program → program [Constructor]
This constructs the conditional with condition cond , positive branch thenprg

and negative branch elseprg .

while cond : boolean prg : program → program [Constructor]
This constructs a while-loop with condition cond and body prg .

6

2.5.3 First Order Formulas

formula < dlformula [Type]
This type contains the first order formulas (boolean formulas plus universally

and quantified formulas).

all vl : (list typedvar) fma: formula → formula [Constructor]
Universal quantification with variables from list vl and formula fma.

ex vl : (list typedvar) fma: formula → formula [Constructor]
Existential quantification with variables from list vl and formula fma.

2.5.4 Dynamic Logic Formulas

dlformula [Type]
This type comprises all First Order Dynamic Logic formulas (first order formulas

plus box and diamond formulas).

box prg : program fma: dlformula → dlformula [Constructor]
This constructor generates the DL box formula of the program prg and the

formula fma.

diamond prg : program fma: dlformula → dlformula [Constructor]
This constructor generates the DL diamond formula of the program prg and the

formula fma.

2.6 Procedure Definitions

defproc [Type]
This is the type to represent procedure definitions. A procedure definition as-

sociates a program to a procedures symbol. It is to be interpreted as a statement
saying that the procedure identified by the given symbol behaves as if implemented
by the given program.

defproc procname: symbol
vars: (list symbol)
prg : program → defproc

[Constructor]

This defines the procedure named procname to be implemented with the program
prg . The variables vars may occur in prg to refer to the parameters of the procedure
call.

defprocs [Type]
This type combines several procedures definitions into a list. Procedures defined

in such a list are to be interpreted as the minimal ones to comply their definitions.
Putting mutually recursive procedures into the same list of procedure-defs, guaran-
tees that the recursion is interpreted as expected. Otherwise additional result state
might be added to the interpretation of the procedures.

defprocs {dp: defproc}∗ → defprocs [Constructor]
Generate the list of the procedure definitions dp.

7

2.7 Generatedness Clauses

generatedness [Type]
This type is used to express that the values of a type can by generated by a

given set of constructors.

generated type: symbol
{const: symbol}∗ → generatedness

[Constructor]

freely-generated type: symbol
{const: symbol}∗ → generatedness

[Constructor]

2.8 Sentences and Annotated Sentences

Sentence [Type]
Formulas and procedure definitions and generatedness clauses describe the valid

models of a specification. This type is the (disjoint) union of the types of formulas
and lists of procedure definitions.

defprocs-sentence dps: defprocs → sentence [Constructor]
Convert a procedure definition list dps into an element of type sentence.

formula-sentence fma: dlformula → sentence [Constructor]
Convert a DL formula fma into an element of type sentence.

generatedness-sentence gen: generatedness → sentence [Constructor]
Generate a sentence of a generatedness clause gen.
The user can refer to a formula or a list of procedure definitions belonging to a

specification by a name. An annotated sentences allows a sentence to be associated
with a name. Furthermore annotated sentences convey the proof state and the rôle
the sentence has within the specification. A rôles of a sentence can either be that
of an axiom, a proof obligation or a lemma.

asentence [Type]
The type for annotated formulas.

formula-kind [Type]
This type is a subtype of symbol representing the kind of a sentence. The only

members of this type are the symbols axiom for axioms, obligation for proof
obligations and lemma for lemmas.

proof-state [Type]
This type is a subtype of symbol representing the proof state of a sentence. It

is one of proved for sentences, that have been proved or are axioms3, or open for
sentences, that have not been proved.

The constructor for type annotated formula is:

3For axioms a trivial proof exists.

8

asentence name: symbol
kind : formula-kind
proved : proof-state
fma: formula → asentence

[Constructor]

This constructor generates an annotated formula from fma by adding the name
name and the kind kind .

2.9 Links and Morphisms

Links in the development graph connect a source specification to a target specifica-
tion and are supplemented with a (signature) morphism. The morphism defines a
mapping of the symbols defined in the signature of the source specification to sym-
bols in the target specification. We distinguish theorem and definition links. The
meaning of a definition link is an enrichment of the target specification with the
result of mapping the source specification according to the morphism. The meaning
of a theorem link is a claim stating that the specification of the target node implies
the result of mapping the source specification according to the morphism.

VSE does not support hiding. So the morphisms must map every symbol of
the theory on which it is applied. Nevertheless, a mapping must not be explicitly
defined for every symbol, because by default each symbol is mapped to itself.

2.9.1 Signature Morphisms

Links have an associated signature morphism, which allows to map sorts, function,
predicates and procedures of the link source to other names in the link target.

morphism [Type]
This is the type of signature morphisms.

map [Type]
This type represents among others a pair of symbols, whose first one is mapped

to the second one in a morphism. Elements of type map are used to construct
representations of morphisms. There are also mappings with restrictions or mapping
of the equation relation to procedure symbols (see constructors sortmap and eqmap
below).

map sourcesym: symbol targetsym: sym → map [Constructor]
This constructs a map from sourcesym to targetsym.

sortmap sourcesym: symbol targetsym: sym restriction: sym → map [Constructor]
This constructs a map from a sort sourcesym to targetsym accompanied with a

procedure symbol restriction. This kind of maps is intended to be used for links that
represent refinements of abstract data types. The restriction procedure terminates
exactly for those inputs, that serve as implementations of the sort in the source
(export) specification.

eqmap sort: symbol targetsym: sym → map [Constructor]
This constructs a map from equations to a procedure in the target specification.

morphism {m: map}∗ → morphism [Constructor]

9

This constructs a morphism consisting of the single maps {m}∗ . Mappings of
a symbol to itself can be omitted. Hence, (morphism) will be interpreted as the
identity.

locality [Type]
This type is used to indicate, whether a link is local or not. It contains only the

two symbols local and global. As VSE is not able to handle local definition links,
VSE currently refuses to work on a development graph containing them.

2.9.2 Links

link [Type]
This data type will be used to describe a link in the development graph.
We distinguish theorem links and definition links.

theorem-link name: symbol
source: symbol
target: symbol
loc: locality
morph: morphism
pstate: proof-state
{attribute: s-expression}∗ → link

[Constructor]

A theorem link is generated from the specification named source to the speci-
fication named target. The parameter name associates the link with a name, such
that it can be referred later, for example to change its proof state. The value of
loc indicates, whether the link is local or global. The morphism of the link is to be
provided as parameter morph. pstate indicates, whether the link has already been
proved. There may be attributes (like conservativity, freeness) which are currently
not supported by VSE. These additional attributes can be added in attribute.

definition-link name: symbol
source: symbol
target: symbol
loc: locality
morph: morphism
{attribute: s-expression}∗ → link

[Constructor]

A definition link is generated from the specification named source to the speci-
fication named target. The parameter name associates the link with a name. The
value of loc indicates, whether the link is local or global. The morphism of the link
is to be provided as parameter morph.

2.10 Error Messages

error [Type]
This type contains the error messages the commands may return.

type-error position: symbol → error [Constructor]
This constructs an error message for the case, when an argument of a command

does not have the appropriate type. The parameter position reveals the position of
the incorrect argument.

10

sort-error {arg: s-expression}∗ → error [Constructor]
This constructs an error message for the case, when an argument contains an

expression that violates the declarations of the current signature.

unknown-spec-error specname: symbol → error [Constructor]
This constructs an error message for the case, when the specification name

specname occurs as an argument to a command, but no specification with this
name exists.

unknown-link-error specname: symbol → error [Constructor]
This constructs an error message for the case, when when no link is named

specname, which occurs in one of the arguments of the command.

illegal-modification-error → error [Constructor]
This constructs an error message for the case, when a command tries to cause

an illegal modification of the development graph or one of its nodes. For example,
trying to change the formula of an axiom could cause this error.

3 Commands

The commands described in this section are used by VSE to obtain all the neces-
sary informations about the current state of the Hets system. The details about
development graph can be retrieved as far as they can be translated to and used by
VSE.

The syntax of the commands in this sections is described in a similar way to
that of constructors.

command v1 : ty1 v2 : ty2 . . . vn: tyn → resulttype [Command]
The s-expression that is sent to the recipient (Hets) of the command has the

form (command v1 v2 ...vn) with the variables replaced by s-expressions of the
corresponding types. The sender (VSE) of the command expects an S-expression
of type resulttype.

3.1 Retrieving Informations about the Development Graph

3.1.1 Indispensable Commands

get-specification-names → (list symbol) [Command]
Return a list of the names of the specification within the graph. The order is

bottom up, i.e. the name of a specification Sp always appears after the names of
all specifications Sp′ with a definition link Sp′ −→ Sp resp. Sp′ =⇒ Sp.

get-sig specname: symbol → (list sigentry) [Command]
Get the signature of specification named specname. If no specification named

specname exists unknown-spec-error is returned.

get-lemmabase specname: symbol → (list asentence) [Command]
Get all annotated sentences belonging to the specification named specname. If

no specification named specname exists an unknown-spec-error is returned.

get-in-links specname: symbol → (list link) [Command]
Get a list of all links with specification specname as target. If no specification

named specname exists an unknown-spec-error is returned.

11

3.1.2 Helpful Commands

The commands described in this subsection do not allow to implement more func-
tionality if added to the ones described below. However, for efficiency reasons it
could be preferable to implement them in Hets.

find-signature-spec specname: symbol sym: symbol → symbol [Command]
Find the specification, which is reachable from specname and has a definition

for symbol sym in the local signature. If no specification named specname exists an
error (unknown-spec-error) is returned. If otherwise the specification exists, but the
symbol sym cannot be found an empty list () is returned.

find-lemma-spec specname: symbol sym: symbol → (list asentence) [Command]
Find all sentences reachable from specname, in which sym occurs. Return a list

of these lemmas. If no specification named specname exists an error (unknown-spec-
error) is returned.

3.2 Propagating Changes

3.2.1 Retrieving Changes from Hets

This section describes commands that are used to update an internal database of
VSE. Hets will keep a record of the state of the last call and provide informations
about the changes that have been made to the development graph since then.

get-newly-proved specname: symbol → (list asentence) [Command]
Get all formulas of specification specname, that have been proved since the last

call to this function. The result is a subset of result of get-lemmabase applied to the
same symbol. If no specification named specname exists an error (unknown-spec-
error) is returned.

get-newly-added-poof-obligations specname: symbol → (list asentence) [Command]
Get all the proof obligations of specification specname, that have been added

since the last call to this function. The result is a subset of result of get-lemmabase
applied to the same specification name. If no specification named specname exists
an error (unknown-spec-error) is returned.

get-newly-removed-proof-obligations specname: symbol → (list asentence) [Com-
mand]

Get all the proof obligations of specification specname, that have been removed
since the last call to this function4. If no specification named specname exists an
error (unknown-spec-error) is returned.

4There may be no need to implement this command, if there is no development graph rule that
can remove proof obligations (or move them to other nodes).

12

3.2.2 Notifying Changes to Hets

set-sentence snt: asentence specname: symbol → symbol [Command]
Add the sentence snt to the specification identified by specname if it does not

already exists. Existing sentences will be modified to become equal to snt. It should
not be possible to add or change axioms. VSE will send lemmas, that the user wants
to have proved by another prover using this command. In this case they will be
classified as lemmas. This command can also be used to notify Hets about the
fact, that a formula has been proved. VSE then sends an annotated formula that
is marked as proved.

After accepting the command, the receiver is expected to update its lemmabase
and if there exists a sentence with the same name this sentence is overwritten.

This command returns the symbol t, if there was no error. Otherwise an ap-
propriate error message is returned: If no specification named specname exists an
error (unknown-spec-error) is returned.

set-link lnk: link → symbol [Command]
Add a link to the specification or modify it. This command will be used to

changed the proof state of links.

4 Examples

4.1 First-order Theorem Links

We consider the following Casl specification:

library library

spec element =
sort elem

end

spec list rev[element] =
free type list [elem] ::= empty | cons(elem; list [elem])
ops app : list [elem] × list [elem] → list [elem], assoc,

unit empty ;
reverse : list [elem] → list [elem]

∀ e : elem; l, l1, l2 : list [elem]
• app(cons(e, l1), l2) = cons(e, app(l1, l2))
• reverse(empty) = empty
• reverse(cons(e, l)) = app(reverse(l), cons(e, empty))

end

spec list rev rev[element] =
list rev[element]

then %implies

∀ l, l1, l2 : list [elem]
• reverse(app(l1, l2)) = app(reverse(l2), reverse(l1))
• reverse(reverse(l)) = l

end

After applying automatic proofs in Hets, we obtain the graphical representation
in fig. 1. Suppose VSE is started in this situation. Then VSE tries to get a list of
all the specifications in the development graph:

13

element

list_rev_rev_E1

list_rev_rev list_rev

Figure 1: The development graph

(get -specification -names)

The response will be:

(element list_rev list_rev_rev_e1 list_rev_rev)

Now VSE is going to build its internal representation of the development graph.
To this end it inspects all the specifications and retrieves their sentences (lemmas).

(get -sig element)

There is only one sort entry in the signature of element:

((sorts elem))

Trying to retrieve all the sentence of this specification

(get -lemmabase elem)

results in an empty list, as this specification only defines a single sort:

()

The next specification VSE might retrieve is list rev.

(get -sig list_rev)

The expected result from Hets is modulo the order of the entries:

((sorts elem , list{elem})
(function app (list{elem} list{elem}) list{elem})
(function cons (elem list{elem}) list{elem})
(function emtpy () list{elem})
(function reverse (list{elem}) list{elem }))

VSE then tries to retrieve the local sentences by sending the command

14

(get -lemmabase list_rev)

Then Hets is expected to return the following expression modulo order of entries
and modulo placement of white space:

((asentence
ga_injective_cons
axiom
proved
(formula -sentence
(all ((var x1 elem)

(var x2 list{elem})
(var y2 list{elem }))

(equiv (eq (fapply cons (varterm x1) (varterm x2))
(fapply cons (varterm y1) (varterm y2)))

(and (eq (varterm x1) (varterm y1))
(eq (varterm x2) (varterm y2)))))))

(asentence
ga_disjoint_empty_cons
axiom
proved
(formula -sentence
(all ((var y1 elem) (var y2 list{elem }))

(not (equiv (fapply empty)
(fapply cons (varterm y1) (varterm y2)))))))

(asentence
ga_generated_list{elem}
axiom
proved
(generatedness -sentence
(freely -generated list{elem} empty cons)))

(asentence
ga_assoc_app
axiom
proved
(formula -sentence
(all ((var x list{elem})

(var y list{elem})
(var z list{elem }))

(eq (fapply app (fapply app (varterm x) (varterm y)) (varterm z))
(fapply app (varterm x) (fapply app (varterm y) (varterm z)))))))

(asentence
ga_right_unit_app
axiom
proved
(formula -sentence
(all ((var x list{elem }))

(eq (fapply app (varterm x) (fapply empty)) (varterm x)))))
(asentence
ga_left_unit_app
axiom
proved
(formula -sentence
(all ((var x list{elem }))

(eq (fapply app (fapply empty) (varterm x)) (varterm x)))))

15

(asentence
ax7
axiom
proved
(formula -sentence
(all ((var e elem)

(var l1 list{elem})
(var l2 list{elem }))

(eq (fapply app (fapply cons (varterm e) (varterm l1))
(varterm l2))

(fapply cons (varterm e)
(fapply app (varterm l1) (varterm l2)))))))

(asentence
ax8
axiom
proved
(formula -sentence
(eq (fapply reverse (fapply empty)) (fapply empty))))

(asentence
ax9
axiom
proved
(formula -sentence
(forall (var e elem) (var l list{elem})

(eq (fapply reverse (fapply cons (varterm e) (varterm l)))
(fapply app

(fapply reverse (varterm l))
(fapply (varterm e) (fapply empty))))))))

VSE sends a request for the links to the specification list rev:

(get -in-links list_rev)

A possible reply from Hets may look like this:

((definition -link
l3
element
list_rev
global
(morphism
(map element element))))

For the generated node list rev rev e1 (corresponding to the specification
list rev rev without the part after the keyword then) the following dialog may
be performed between Hets and VSE:

(get -sig element)

Hets may return the empty list5, as there are no local definitions in this theory:

()

Then the lemmas are retrieved by sending

(get -lemmabase list_rev)

5However, the current version of Hets displays all inherited signature entries when ‘Show
Signature´ is called for this node in the GUI. It is no problem, if this list would also contain
inherited entries from list rev or element.

16

(
(asentence
ax1
obligation
open
(formula -sentence
(all ((var l1 list{elem})

(var l2 list{elem }))
(eq
(fapply reverse (fapply app (varterm l1) (varterm l2)))
(fapply app

(fapply reverse (varterm l2))
(fapply reverse (varterm l1))))))

)
(asentence
ax2
obligation
open
(formula -sentence
(all ((var l list{elem }))

(eq (fapply reverse
(fapply reverse (varterm l)))))))

)

We skip the dialog for the node list rev rev. Suppose the user proves the
obligation ax1 in list rev rev e1 in VSE. Then VSE may notify Hets about the
prove by sending it:

(set -sentence

(asentence

ax1

obligation

open

(formula -sentence

(all ((var l1 list{elem})

(var l2 list{elem }))

(eq

(fapply reverse (fapply app l1 l2))

(fapply app

(fapply reverse l2)

(fapply reverse l1)))))

)

list_rev_rev_e1)

5 Problems

5.1 Local Links

VSE cannot handle local definition links. Initially, this problem will be approached
in the following way: If a definition link is local, VSE will refuse to handle the
development graph completely and stop (after informing the user). Later a mecha-
nism could be implemented that forbids the use of axioms in theories that are only
reachable by following links beyond local links. Local theorem links are no problem.

17

VSE simply will add proof obligations for the local axioms and ignore any other
axioms that are only present in indirectly reachable specifications.

5.2 Duplicate Axioms

Some Hets rules copy axioms from one specification to another specification along
links in order to compute a Grothendieck institution. This can yield a confusingly
large specification containing many duplicated and mapped axioms. A way around
this problem is to assume, that all axioms that will be added after starting Hets do
not change the semantics of the specification. Hence, VSE simply can ignore such
axioms. If a morphism is associated with a link instead of an exact copy the result
of applying the morphism is inserted into the target specification. In this situation
VSE will construct a theory from the source theory by applying the morphism. So
again, there is no need to add the mapped axioms to the target theory. If VSE is
started later, when duplicate axioms already exist in Hets, VSE may try to find
duplicates when initialising and remove them.

5.3 Restricted Character Set for Names

VSE currently maps all characters appearing in symbols (sort, variable, function,
predicate and procedure names) to uppercase. Furthermore, the use of special
characters is limited. This may cause a problem when translating the names to
VSE. Virtually any solution will lead to results that are not very user friendly.

18

