Commentary on PGIP
[Version 1.30, 2007/07/11 10:28:22, IATEX: August 28, 2009]

David Aspinall Christoph Lith
August 28, 2009

PGIP is the Proof General Interaction Protocol, a message passing protocol for communicating proof
components, primarily interactive theorem provers and their interfaces.

This document gives commentary on the definition of PGIP, version 2.0.X. The commentary is intended
as a set of notes to help implementors of PGIP-enabled components; it does not form a complete de-
scription or motivation for the protocol. The RELAX-NG schemas for PGIP messages and the PGML
markup language are given in the appendix.

Warning! this is an evolving draft version, some details in the text may be out-of-step with
schemas shown in the appendix and with the latest implementations. And you may not be

looking at the latest version of this document! If in doubt, please contact the authors before
relying on details here.

1 Basics

1.1 Overview

1. PGIP is an interaction protocol between different components of an architecture to support interactive
proof development, and a markup language for proof scripts in such an environment.

Fig. 1 shows the corresponding system architecture.

Proof
Assistant PA P

PG P A

Graphical User
Interface

PG P
Text Editor
PA P
‘%\

Web Browser

Broker

Y
‘ File System Theory Store

Figure 1: PG/Kit system architecture

2. The PGIP protocol is intended as a mechanism for conducting interactive proof using PGIP-enabled
software components. The aim of interaction is to produce one or more proof scripts.

3. A proof script has a textual representation as primary and resides in a file. Proof scripts are written
in the prover’s native language.

4. Part of PGIP serves to make explicit the structure which is normally implicit in the proof script, by
requiring the proof assistant to add certain XML mark up. The basic invariant is that by forgetting all
the PGIP structure (applying the trivial forgetful stylesheet, if you will) we get back the original proof
script.

1.2

PGIP communication

. PGIP components connect to a central Broker process which helps manage interactive proof, and

connection between front-ends and provers. The connection is a channel (typically a Unix pipe or
socket).

PGIP components are designated as prover, display, or auxiliary (see Fig. 1).

. Messages are classified: those which are sent fo the PG Broker are given class pg. Messages which

are sent to a proof assistant are given class pa, messages which are sent to a display are class pd.

PGIP communication proceeds by exchanging PGIP packets as XML documents belonging to the
PGIP markup schema. A PGIP packet is contained in the <pgip> element.

. The interface sends command requests to the prover, and processes responses which are returned.

Unlike classical RPC conventions which are single-request single-response, a command request may
cause several command responses, and it is occasionally possible that the prover generates “orphan”
responses which do not correspond to any request from the interface.

Each PGIP packet contains a single PGIP message, along with identifying header information. The
PGIP message may be a command request or a command response.

. The broker will only attempt to send commands to the prover when it has received a ready message.

On startup, the prover may issue some orphan responses, followed by a ready message.
Each PGIP packet has the following attributes:

tag A message tag, for example, the name of the origin component.

id The session identifier of the originating component.

destid The session identifier of the destination component (for a response packet).
class The class of the message, as above.

seq A unique (for this session of this component) sequence number. Sequence numbers never
decrease over time.

refid and refseq Both optional; if given, the session identifier, sequence number of a message this
one refers to (see below).

origin Only the broker will set this attribute, either to broker to indicate messages generated within
the broker, or to the component identifier of the originating component if it is relaying message,
e.g. from a prover to a display.

In the following section, we describe the single messages in more detail. We classify the messages in

three categories: common messages (all classes), those exchanged between prover and broker (classes
pg and pa), and those exchanged between prover and displays (classes pg and pa).

2 Common Interaction

This section describes messages common to all three main classes of components.

2.1 PGIP and PGML markup
1. PGIP and PGML are separate document types:

o PGML describes the markup for displayed text/graphics from the prover
e PGIP describes the protocol for interacting with the prover

2. PGIP contains PGML in the same (default) namespace, so PGIP messages may contain PGML
documents in certain places. PGML text is embedded with root <pgm1>, which allows easy filtering by
components concerned with display.

2.2 Prover to interface configuration
<usespgip>

e The prover reports which version of PGIP it supports (only between prover and broker).

<usespgml>

e The prover reports which version of PGML it supports (only between prover and broker).

<pgmlconfig>
e The prover reports its configuration for PGML.

e PGML can be configured for particular symbols. The prover reports the collection of symbols it will un-
derstand as input and emit as output, along with optional ASCII defaults. PGML symbol conventions
define a large fixed set of named glyphs.

<hasprefs>

e The prover reports some user-level preference settings, each one in an <haspref> element, giving
its type and possible a default value. A collection of global preferences (dynamic switches inside the
prover) are reported by the prover in response to an <askprefs> message, or are volunteered by the
prover during configuration. Further object-specific preferences may be reported inside <objtype>
messages which appear as part of the <displayconfig> configuration.

<prefval>

e The prover reports a change in one of its preference settings, perhaps triggered by the interface.

<displayconfig>

e The prover specifies a display configuration which contains items to configure the interface to the
running prover, which are described by the remaining elements listed below. In particular, the
lexicalstructure elements describe the lexical structure of proof scripts for the prover, while the
objtype and opn operations describe the types of values that the prover wants the user to manipu-
late.

<welcomemsg>

e A simple textual message to inform the user about the underlying prover process.

<icon>

e an icon which is a Base64-encoded bitmap picture, representing the prover.

<helpdoc>

e An available item of documentation to make available to the user (e.g. in a menu). Includes either a

URL or an argument for the viewdoc proof context command. There may be several or none.

<lexicalstructure>

e An element which configures (some part of) the proof script syntax. It may include any of the below

elements:

— keyword. Each keyword element specifies the word itself (word attribute), together with an op-
tional category and long and short help texts.

x The category is used, e.g., for subdividing menus or for configuring more than one colour
for keyword syntax highlighting. It is not used for parsing. Recommended categories are:
major (the default if none is mentioned) for main keywords;
minor auxiliary keywords.
with language-specific additions.

*x The shorthelp element gives a short tooltip-length help text for the keyword.

x The longhelp gives a larger paragraph-length help for the keyword.

— stringdelimiter elements
Notice that the features of the lexical syntax which are supported by different displays may be affected

by their individual capabilities (e.g., Emacs only allows one or two characters in comment-start and
comment-end sequences).

<objtype>

The prover specifies a basic object type it will let the interface manipulate.
A type has a mandatory name attribute;
it can have a description attribute, describing the type, and

an icon which is a Base64-encoded bitmap picture (at the moment, the default and only format here
are GIF bitmaps).

optional preferences specified by a <hasprefs> element; these may indicate, for example, whether a
theorem is flagged as being an introduction or elimination rule.

Further, the types determine a hierarchical organisation of the prover objects; objects of each type
may contain objects of other other types, as specified by the contains attribute.

The following types are always predefined:

— "toplevel" for toplevel objects;

"theory" for theory files;

"theorem" for theorems;
— "comment" for comments.

theory contains theorem and theory. Provers are free to redefine these types, e.g. to define new
icons.

<opn>

e opn are commands which combine object values of the prover, in a functional manner. The opcmd
should be some text fragment which produces the operation. The operations could be triggered in
the interface by a drag-and-drop operation, or menu selection.

e As a general convention, if several operations are possible to produce a desired target object, then
the interface should offer them in the choice that they were configured.

2.3 Identifiers

The PGIP model accommodates identifiers, i.e. the ability of the prover to name objects. The protocol
makes the following assumptions about identifiers:

e Each identifier has a type (see above).

e Provers can arrange identifiers in a hierarchical fashion, so the name of one identifier can be valid in
the context of another identifier, as specified by the contains attribute on the types.

¢ Identifiers can be used in a proof by referring to their name, and they can be displayed.

e The prover has a certain amount of pre-defined identifiers available upon starting, and can define
more identifiers during run-time.

<askids>

e Ask prover to display identifiers, possibly in a given context and only of a given type; prover should
respond with setids or addids message.

<showid>

e Ask prover to display value of an identifer. Prover should respond with showid message.

<idtable>

¢ A list of identifiers of a given type, possibly in a given context.

<setids>
e Argument is a list of idtables.
e For each idtable, deletes previously known identifiers of that type and context, and add given iden-
tifiers.
<addids>
e Argument is a list of idtables.

e For each idtable, add given identifiers.

<delids>
e Argument is a list of idtables.

e For each idtable, deletes previously known identifiers of that type and context.

<idvalue>

¢ Displays the value of a given identifier as a sequence of text of PGML packets.

3 Prover and Broker

This section describes the communication between broker and prover. The proof script commands are
also handed on to the interface for display, but the interface is only supposed to use the markup to display
structure.

3.1 Prover control commands

<proverinit>

e Reset the prover to its initial state.

<proverexit>

o Exit the prover gracefully.

<startquiet>

e Ask the prover to turn off its output. This is intended to supress display of intermediate steps while
processing a possibly large number of proof commands.

<stopquiet>

e Ask the prover to turn on its output again.

3.2 Prover output

<ready/>

e The prover should issue a ready/ message when it starts up, and each time it has completed pro-
cessing a command from the interface.

e The interface should not send a command request until it has seen a ready/ message. Input which
is sent before then may cause buffer overflow, and more seriously, risks changing the prover state in
an unpredictable way in case the previous command request fails.

<normalresponse>

o All ordinary output from the prover appears under the normalresponse element. Typically the output
will cause some effect on the interface display, although the interface may choose not to display some
responses.

e A PGIP command may generate any number of normal responses, possibly over a long period of
time, before the ready response is sent.

<errorresponse>

e The errorresponse element indicates an error condition has occurred.
e The fatality attribute of the error suggests what the interface should do:

— anonfatal error does not need any special action;

— a fatal error implies that the last command issued from the interface has failed (a recoverable
error condition);

— apanic error implies an unrecoverable error condition: the connection between the components
should be torn down.

e The location attibute allows for file/line-number locations to identify error positions, for example, for
when a file is being read directly by the prover.

e A PGIP command may cause at most one error response to be generated. If an error response
occurs, it must be the last response before a ready message.

<scriptinsert>

e This response contains some text which should be inserted literally into the proof script being con-
structed.

e The suggestion is that the interface immediately inserts this text, parses it, and sends it back to the
proof assistant to conduct the next step in the proof. This protocol allows for “proof-by-pointing” or
similar behaviour.

<metainforesponse>

e The metainforesponse element is used to categorize other kinds of prover-specific meta-information
sent from the prover to the interface.

e At present, no generic meta-information is defined. Possible uses include output of dependency
information, proof hints applicable for the current proof step, etc.

e Provers are free to implement their own meta-information responses which specific interfaces may
interpret. This allows an method for extending the protocol incrementally in particular cases. Exten-
sions which prove particularly useful may be incorporated into future versions.

Here are some example message patterns allowed by the PGIP message model:

toprovermsg toprovermsg toprovermsg

<ready/> <normalresponse> <normalresponse>
<normalresponse> <errorresponse>
<normalresponse> <normalresponse>
<ready/> <ready/>

The toprovermsg is a message sent to the proof assistant and the responses are shown below. Responses
all end in a ready message; the only possible exception is a panic error response, which indicates that the
proof assistant has died (perhaps committed suicide) already.

3.3 Proof control commands

The PGIP proof model is to assume that the prover maintains a state which consists of a single possibly-
open proof within a single possibly-open theory, see Section 3.4 for more explanation. We distinguish
between proper proof commands which can appear in proof scripts, and improper proof commands
which cannot.

In PGIP 1.0, proper commands were required to be interpreted by the theorom prover so they could
be used to construct parts of proofs (e.g. the interface can provide an action for completing a proof). In
PGIP 2.0 we rely on other mechanisms to construct proof script text, and proper commands are interpreted
merely as markup which provides structure on a proof script document for the interface. The markup should
be ignored by the prover when it processes a proper proof command. To simplify things for the interface,
a proper proof commands may be wrapped in a <dostep> element which is ignored by the prover as well
(and which is not allowed in markup for <parseresult>).

Proper proof commands.

<opengoal>

e open a goal in ambient context

<proofstep>

¢ a specific proof command (perhaps configured via <opcmd>)

<closegoal>

e complete & close current open proof (succeeds iff goal proven)

<giveupgoal>

e close current open proof, record as proof obligation (Isar’s sorry).

<postponegoal>

e close current open proof, retaining attempt in script (Isar’s oops)

<comment>

e a proof script comment; text is probably ignored by prover

<whitespace>

e a whitespace comment; text must be ignored by prover and may be discarded

<litcomment>

¢ a literate comment which is never passed to the prover

<spuriouscmd>
e a command which is ignored for undo purposes, and which could be pruned from a proof script (e.g.
print x).

Improper proof commands.

<dostep>
e Used to issue a proper proof command to the prover, without passing in more specific markup. The
prover should interpret <dostep> and any proper proof command simply by executing their contents.
<undostep>

e undo the last proof step issued in currently open goal.

<redostep>

e redo the last proof step issued in currently open goal. Optionally supported.

<abortgoal>

e give up on current open proof, close proof state, discard history.

<forget>

o forget a theorem (or named target), outdating dependent theorems (or other elements).

If theory name is omitted, we default to currently open theory. If ordinary name is omitted, default to
whole theory. (Makes no sense for both names to be omitted). Optional type attribute is allowed for
provers that have overlapping namespaces, that may allow forgetting different kinds of things within
theories.

<restoregoal>

e re-open previously postponed proof, outdating dependent theorems. This is a context switch opera-
tion. Optionally supported.

Further notes:

1. The improper proof commands are meta-operations which correspond to script management be-
haviour: i.e., altering the interface’s idea of “current position” in the incremental processing of a file.
The broker will enhance whatever native history management is supported by the prover, and try to
exploit it.

2. In a later version, we may allow the prover provide a way to retain undo history across different proofs.
For now we assume it does not, so we must replay a partial proof for a goal which is postponed.

3. We assume theorem names are unique amongst theorems and open/goals within the currently open
theory. Individual proof steps may also have anchor names which can be passed to forget.

4. The interface manages outdating of the theorem dependencies within the open theory. By constrast,
theory dependencies are managed by the prover and communicated to the interface.

3.4 File-level and theory-level commands

PGIP assumes that the prover manages a notion of theory, and that there is a connection between theories
and files. Specifically, a file may define some number of theories. The interface will use files to record the
theories it constructs (but may choose to only construct one theory per file).

PGIP assumes that the proof engine has four main states, which are nested:

top level inspection and navigation of theories only; no focus of active development.

open file a file is open for processing; we may declare theories now and other items which appear within
files.

open theory a theory has been opened for construction; we may declare new definitions, types, and other
commands which appear at the theory level. The prover may record an undo history of theory-level
element declarations, but discards this history when the theory is complete.

open proof a proof has been opened for construction; we may issue proof steps which aim to complete the
proof. The prover records an undo history for each step, but discards this history on proof completion.

This model only allows a single open item at each level (file, theory, or proof). Nonetheless, it should
be possible for the interface to provide extra structure and maintain an illusion of more than one open
item, without the prover needing to implement this directly. This can be done by judicious opening and
closing of files, and automatic proof replay. Later on, we may extend PGIP to allow multiple open proofs to
implemented within the prover to provide extra efficiency, to avoid too much proof replaying.

Similar to proof commands, theory and file commands divide into proper commands, which may appear
in proof scripts, and improper commands, which may not. Proper file commands are treated as markup on
parsed proof scripts, just as proper proof commands are.

Some improper commands are optional. Commands which are not supported in general should not be
included in <acceptedpgipgelems> for the component. Where a command is not possible in a particular
case, an error message should be given.

PGIP supposes that the interface has only partial knowledge about theory construction, and so the
interface relies on the prover to send hints. Specifically, to help manage file-level control, there are are
two information response messages which may be sent from the prover which help connect to the prover’s
internal file management system (if it has one).

Proper File Commands.

<opentheory>
e begin construction of a new theory.
Attributes may provide the ancestor theory names.
<closetheory>
e complete construction of the currently open theory. When executed this discards any theory-level
undo history.
<theoryitem>
e an item in a theory other than a binding or proof, for example type definition and data type declara-
tions.

Improper File Commands.

<doitem>

e Process the given proper theory command (without passing in markup)

<undoitem>

e Undo the last step during theory construction (or the given named target, if possible).

<redoitem>

e Re-process the last undone theory-level item, if possible.

<aborttheory>

e Give up on the currently open theory (undo to before theoryopen, discarding history).

<retracttheory>

¢ Remove the named theory, and any dependent theories.

<openfile>

¢ Signal that the named file is being opened for constructing a proof text interactively.
The prover may pay attention to this message if it tracks processed files: the file should not be one
which is already processed.

<closefile>

e Signal that the currently open file has been completely processed.
The prover may pay attention to this message if it tracks processed files. The file should now be
considered fully processed, as if the prover had read it directly.

<loadfile>

e Read a file directly for processing in batch mode.
The prover may load any required files automatically, but should indicate when this happens by send-
ing appropriate <informfileloaded> messages to the broker.

10

<retractfile>

e Undo a processed file. Optionally supported.
Only relevant if the prover tracks processed files. The prover may retract any files which are depen-
dent on the given one, but if it does so, it should inform the broker of this by sending appropriate
<informfileretracted> messages. Files which are not retracted automatically by the prover will be
retracted by the broker.

<changecwd>

e change prover’s current working directory.
In case the prover may read subsidiary files, the interface can set the directory that the proof script
under construction is destined for. Normally this would be the path of the URI given in an openfile
command which might precede openfile.

<systemcmd>

e An escape which allows to send an arbitrary command to the prover. A certain security hole.
File loader information responses.

<informfileloaded>

e prover informs interface a particular file is loaded.
When the interface asks for a file to be loaded, or when some proper proof script command triggers
file loading, a number of <informtheoryloaded> responses can be sent from the prover. These
indicate dependency of the loaded file on whatever caused the loading, and also suggest that the
loaded files should be considered processed by the prover.

<informfileretracted>

e prover informs interface a particular file is outdated.
Conversely, when the interface asks for a file to be retracted, the prover may automatically retract
dependent files. If it does so, it should inform the broker with <informfileretracted> messages.
The broker will retract remaining dependencies.

3.5 Parsing

Proof scripts are written in the prover’s native language. By parsing, we mean enriching them with PGIP
markup to make their structure explicit. The component which does the parsing need not always be the
prover, it could be an auxiliary component which filters out the <parsescript> requests from the input
stream and answers them.

<parsescript>

e Requests the prover to parse one or more command lines. (This can be a whole proof script.) Optional
attributes are the starting position; these are for error reporting, such that <errorresponse> answer
can carry the correct location wrt to the original source.

<parseresult>

e Returns the result of a parsing request.

11

<singleparseresult>

e A single parse result is an <unparseable> element, or an <errorresponse> containing error mes-
sages, or a proper script command, which is either a proper proof command, a proper file command,
or a delimiter (<openblock>/<closeblock> below).

One <parsescript> must result in exactly one <parseresult>. There is an invariant that by discard-
ing all markup on the result of the parse, we get back the original proof script. The prover may leave
out text when returning the parsed elements (these are then considered unparseable), but the order
must be maintained.

<unparseable>

e Returns text the parser can not make head or tails of.

<openblock>

e Opens a layout block. The proof script can have layout structure annoted with basic <openblock>
and <closeblock> elements. A basic <openblock> element has no attributes except optionally a
name. This block structure suggests intendation or a tree-like structure for layout purposes. A basic
<openblock> is taken to be associated with the immediately preceding document element; block
delimiters themselves are empty.

Blocks can alternatively be treated special positions in the document which may be replaced by text
in document-based development. These blocks are indicated by <openblock> with a non-empty
metavarid or objtype element. The meta-variables is used to communicate a document position
back to the prover; an object type allows the interface to replace the contents of the document ele-
ment. These kind of blocks are not used for layout.

<closeblock>

¢ Closes the matching block. Once parsing has been completed, there will be a matching <closeblock>
for each <openblock>, but in a single <parseresult> this may not be the case for layout blocks, as
we may only parse part of a document. For document element blocks

12

4 Broker and Display

This section describes the communication between broker and display (classes pg and pd). In the following,
display messages go from the broker to the display, and display commands go from the display to the
broker.

4.1 The PGIP edit-prove cycle

The PGIP system architecture supports an edit-prove cycle in which the user can interactively edit and
construct proof scripts, residing in files.

Internally, the broker component is responsible for the actual handling of the source documents. The
user editing commands are translated into PGIP display commands (class pd), which are sent to the broker
for the actual editing.

For the display, the source is broken up into objects [FIXME: bad name, heavily overloaded. What
about items, units or atoms?] which contain a PGIP element each. Each object has an identifier, which the
display has to keep track of, as subsequent edit and change commands pertain to the object identifier.

Each object has a status, which ranges over five possible values (see Fig. 2). The different transitions
between the objects are a refinement of the script management as implemented by Proof General. The
object status can change by the results of the interaction with the system. After editing, an object becomes
either parsed or unparseable; after being processed by the prover it becomes processed and can become
outdated later on. Note that while being processed the object cannot be edited; if it has been processed
it needs to be outdated first. The unparseable status is for objects which cannot be parsed (because they
are syntactically malformed) but which we still need to be part of the proof script.

Unparseable

Being processed

Figure 2: Object Status Transitions

Here is a typical edit-prove cycle:

1. Loading a file.
(a) The user wants to edit an old file and selects the corresponding menu button or cryptical key
sequence. This results in the display sending a <loadfile> message to the broker.

(b) The broker actually reads the file, locks it while it is being edited, and sends it to the prover to be
parsed (with a <parsescript> request).

(c) The prover responds with one or more <parseresult> packets, containing the marked-up proof
script. The broker actually checks that the marked-up proof script is the same as the original, to
make sure no source code gets lost.

(d) The broker now sends a series of <newobj> messages to the display. This will actually display
the source file.

(e) To save a file, the display sends a <savefile> message, which causes the broker to assemble
the source file and write it to a file.

2. Editing.

13

(a) The user can edit an object. In a graphical display, the user may actually see the object structure
as it is graphically represented, but in a pure textual interface (such as the revered Emacs editor)
only text can be edited. In any case, the display must keep track of the positions of the object in
the display, such that any edit operation on part of the user can be translated into a <editobj>
request being sent back to the broker. <editobj> contains a range of object identifiers, and the
new text to be inserted for these identifiers.

(b) The broker now sends <delobj> messages for all objects in the span being edited, signalling to
the display that they are not needed any more.

(c) The broker decides wether this edit is allowed or not: it is always allowed for comments, out-
dated and unparsed objects, never allowed for objects being processed (and if possible, the
display should not allow it to start with), and for processed objects it corresponds to a request to
outdate the object, followed by the actual edit. If editing is not allowed, the broker sends an error
message to the display, and <newobj> messages which reinstate the original content. [FIXME:
this is debatable, as the user loses his changes? Should not have made them in the first place?]

(d) If editing is allowed, the text is sent to the prover to parse. We make the assumption here that the
prover does not need a context to parse single commands like this, as this would considerably
complicate the protocol; this seems a reasonable assumption as no typecheck etc. needs to be
performed. The prover either returns a <parseresult> element if the parse is successful, or an
error message otherwise which is sent on to the display.

(e) If the broker received an error message, it sends a <newobj> message inserting an unparseable
object. The user can then try again.

(f) If the parsing suceeds with a series of <parseresult>, the broker sends on corresponding
<newobj> message (one for each object) to the display to insert the new objects into the buffer.

3. Proving: processing a file.

(a) Processing a file means that the user requests the status of a particular object to be changed
(e.g. to processed to make it up-to-date, or to outdated if it needs to be edited). The display
sends a <setobjstatus> request to the broker.

(b) The broker checks the status of the object, and translates the request into a number of PGIP
commands sent to the prover. (To bring a single object up-to-date, an arbitrary number PGIP
commands may be needed, e.g. a long proof script be worked through).

(c) The resulting object changes (not only for this object as other objects may change status as
well, e.g. objects this depends on being brought up-to-date) are sent back to the display as
<objstatus> messages. The last one of these message will change the status of the required
object, unless an error has occured.

4.2 Control Messages
Attribute: prvid

e A unique prover identifier. Once a prover has started, it is referred to by a such an identifier. The
Broker can handle more than one prover at a time, but each source file can only contain theories and
hence objects from a single prover.

<componentspec>

¢ specifies a PGIP component. It gives a unique identifier (e.g. "isa2004-HOL", a textual name un-
der which is visible and meaningful to the user (e.g. "Isabelle 2004/HOL"), the type (allowed are
provertype, displaytype, and auxiliary) and specifies how to connect to or start it.

e Only the broker knows the specifiation of the components. The present assumption is that the bro-
ker reads a configuration file containing a list of <componentspec> on startup; this should later be
extended to allow dynamic configuration, e.g. by allowing for new components to announced to the
broker.

14

e On starting a display, the broker will send it a <brokerstatus> message (containg in particular a list
of known provers) as part of the initial configuration sequence.

Display Commands:

<launchprover>
e request a new prover to be launched; attribute componentid is the component identifier for a known
prover.
<exitprover>

e requests prover to be stopped; attribute is the prvid.

<restartprover>

e requests prover to be restarted; attribute is the prvid.

<shutdownbroker>
e requests broker to perform shutdown; optional attribute is force. The broker will not shut down if
there are still unsaved changes in source files, unless ‘force’ attribute is given (with value true).
<brokerstatusquery>

e request broker status information.
Display Messages:

<brokerstatus>
e status information from broker, containing known provers, running provers, and some textual informa-
tion;
<proveravailable>

e a new prover is available under name and componentid given as attributes (must be launched before
use.)

<proverstarted>

e a new prover has just started under proverid given as attribute.
The proverid is the same as the componentid used to start this prover. Thus, we cannot run multiple

copies of the same prover concurrently.
<proverstatus>

e prover status has changed. Displays are urged to display ready/busy information, as provers may
diverge and users will want to notice.

e Attributes:

prvid unique prover identifier

proverstatus can be busy, ready Or exitus

15

4.3 File Handling
Attribute: srcid

e A unique source file identifier. The broker can handle more than one source file, and so must the
display. The source file identifier is assigned by the broker once the file has been loaded or created,
and referred to when saving the file, or inserting new objects. This corresponds, very roughly, to an
Emacs buffer.

Display Commands:

<loadparsefile/>
e user requests an existing source file to be loaded into a specific prover.
o Attributes:

url URL of file to be loaded. (The Broker will not understand anything else than the file scheme for
a while.)

prvid identity of prover which should read the file.

<dispopenfile/>
e user requests a new source file to be created.
o Attributes:

url URL of file to be created.
overwrite overwrite if file exists (otherwise gives an error).
prvid identity of prover which the source file is to be created for.

<newfilewith/>

e user requests a new source file to be created, with given text content. In contrast to dispopenfile,
the file may be written out later, and the user may not commit to any file name yet. In that case, a
subsequent savefile must give a URL.

e Attributes:

url URL of file to be created.
prvid identity of prover which the source file is to be created for.

<savefile/>
e user requests changes to be commited
e Attributes:

srcid unique source file identifier
url (optional) URL of where to save; default is to save where it has been created or loaded it from.

<discardfile/>
e User wants to discard changes to this file.
e Attributes:

srcid unique source file identifier

16

Display Messages:

<newfile/>

e The broker has created a new file or loaded an old file, and announces the new source file identifier.
o Attributes:

srcid unique source file identifier

<filestatus/>

¢ Informs the display that the status of a file has changed. The interface can use this to display 'needs-
save’ information.

o Attributes:

srcid unique source file identier
filestatus new status: saved, changed, Or discarded.

datetime Time and date in XML Schema format (briefly, CCYY-MM-DDThh:mm:ss followed by Z for
Zulu time or a timezone offset like -01:00). It indicates the time the status change took effect (in
particular, when a file was written).

e A discarded message is the last in which this srcid will be used.

4.4 Object Management

Attribute: objstatus
e Attribute which can have five possible values:

— unparseable

parsed

being processed

processed
outdated

e The interface should if possible stop the user from editing objects which are being processed, as the
broker will reject these edits.

Attribute: objid

e A unique object identifier, which is unique for this broker during this session, across all objects in all
source files and for all provers.

Display Messges:

<newobj>

e The broker has created a new object and requests it being displayed. The contents of this element is
a proper script command, and the attributes are as follows:

srcid identifies the source file in which this object is being inserted.

objid unique object identifier, to be used in subsequent editing operations;

objposition optional objid of object before which this object is inserted. If empty, insert at the end
of the current text.

objstatus object status (see above; freshly created objects are either of type parsed or unparseable);

objparent optional objid of a parent object, in case the display wants to display objects hierarchi-
cally. These are generated from the block structure given by the parser, and are only for layout;
they carry no semantic meaning.

17

<delobj/>

e Signals that the broker has deleted all references to this object identifier, and requests display to
delete it if it has not already done so.

e Attributes:

srcid unique source file identifier
objid unique object identifier

<objectstatus/>
e State of this object has changed in the broker
o Attributes:

srcid unique source file identifier
objid unique object identifier
objstatus new object status.

Display commands:

<editobj>
e The user has edited one or more objects. The content of this message contains the edited text.
o Attributes:

editfrom (optional) unique object identifier of object where the editing started; if not given edit starts
from first object.

editto (optional) unique object identifier of object where the editing ended; if not given edit ends
with last object.

srcid (optional) identifies the source file in which the objects are edited; can be omitted if one of
editfrom and editto is given.
<createobj>

e The user has entered text which is not an edit of existing objects; in other words, the user requests
new objects to be created. The content of the message contains the entered text.

e Attributes:

srcid (optional) identifies the source file in which this object is created.

objposition (optional) unique object identifier before which the new objects are to be inserted. If
empty we add resulting objects to the end of the buffer.

At least one of srcid or objposition has to be given. Since the object determines the source file, if
objposition is given, it takes precedence over srcid.
<setobjstatus/>
e The user has requested the status of this object to be changed.
o Attributes:

objid unique object identifier
objstatus new object status. Only processed and outdated status can be requested.

18

5 PGML markup language (v 2.0+)

PGML is a simple markup language for annotating prover input and output text. Annotations can be used to
provide pretty printing hints (blocks and line breaks), or additional structure on already pretty-printed text.
The markup is intended to be further transformed (e.g. by system-specific stylesheets) to produce HTML
or other display forms.

PGML is not intended to be a complete language for fully flexible page layout. Instead, if needed, more
complex layout instructions can be embedded in another XML language using the <embed> element: for
example, MathML for math fragments or HTML for ready-rendered web pages.

Text is split into terms which can have a nested subterm structure. A <subterm> is a position for
attaching annotations of various kinds. Annotations can include:

Attribute: subterm
name a user-level global identifier
objtype (obj)type information
place placement directives (sub, super, above, below)

decoration decoration hints for fonts (bold, italic) or colouring (e.g. standard error, warning and information
attributes for markup with red/yellow/blue squiggles)

action actions for activation (e.g. triggering a context menu, button to show a button, or toggle for folding).

pos a position pointer to the some content form (e.g. true abstract syntax before rendering) which is used
to communicate back to the prover (also used for menu request or button pushing).’

xref a cross reference to a defining declaration (typically a file URL with a numerical dotted fragment for
the line and column number, e.g. file:///home/da/Test.thy#15.55.

Leafs of terms can be strings, <atom> elements or (atoms containing) <sym> elements. The <sym>
element is a named reference to a symbol (or composite symbol) which has been configured in a symbol
configuration specific to the prover/display.

Pretty printing <box> annotations are included, modelled after those of BoxML in GtkMathView (see
http://helm.cs.unibo.it/mml-widget/qna.html).

See comments in the schema for more information.

<pgml>

e This element encloses a PGML document which is displayed in a window.
Attributes:
area for output markup, used to indicate a window where the document should appear.
version version of PGML this document uses.
systemid System identifier token. This can be used by the display to control the interpretation of
prover-specific style elements.

The version and systemid attributes will not normally be used by the prover, since the surrounding
PGIP packet should determine these. The broker may add them for the purposes of sending on to
other components.

"TODO: not yet harmonised with PGIP messages

19

Attribute: displayarea

PGIP assumes a display model which contains (at least) two display areas: the message area and
the displayarea.

Typically, both areas are shown in a single window. The display area is a possibly graphical area
whereas the message area is a scrollable text widget that appears (for example) below the display
area.

The interface should maintain a display of all message area output that appears in response to a
particular command. Between successive commands (i.e. on the first new message in response to
the next command), the interface may (optionally) clear the message area.

The interface should simply replace display area output whenever new display area output appears.

Additional features may be desirable, such as allowing the user to keep a history of previous displays
somehow (display pages by forwards/backwards keys; messages by text scrollbar).

The interface is free to implement these displays in different ways, or even supress them entirely,
insofar as that makes sense.

20

© 0 N o O B~ W N =

o 0O O O O g o o0 g g o g g oo a & b B H B B B B BB W W W W oW oW WwWW NN NN NN NDND S s a S a
A WO N - O © 0N OO g B ON = O © 0 N O O & OO0 - 0 © 0w N O g & OWN - O O© 0 N O O & WOWN - O © 0N O O & W N = O

A Schemas for PGIP and PGML

A.1 pgip.rnc

RELAX NG Schema for

Christoph

Advertised version:

Status: Prototype.

Contents

Prelude
Top—level

Display Commands

Prover Control

PGIP, the Proof General Interface Protocol

Authors: David Aspinall, LFCS, University of Edinburgh

L th, University of Bremen

2.1 (pre—1)

Component Control messages

0

1

2

3.

4. Prover Configuration

5. Interface Configuration
6
7

Proof script markup and proof control

CVS Version: $Id: pgip.rnc,v 3.46 2007/09/16 15:42:21 da Exp $

For additional commentary, see accompanying commentary document available at
http ://proofgeneral. inf.ed.ac.uk/Kit/docs/commentary. pdf

Note on datatypes.

(i.e. toke
string : any string

HHEHBRHRBHEHREHR BB ERRHR BT BB ER R BRI RS

(see e.g. http ://books.xmlschemata.org/relaxng):

token : any string possibly with spaces,

but spaces are normalised/collapsed

nised). Same as XML Schema xs:token
, whitespaces preserved. Same as XML Schema xs:string

(NB: attributes are normalised by XML 1.0 parsers so
spaces/newlines must be quoted)
text : text nodes/mixed content (whitespace may be lost in mixed content)

So: attributes should usually be tokens or more restrictive; (sometimes: strings for printing)
element contents may be string (preserving whitespace), token (tokenising),
or text (which may contain further nodes).

0. Prelude

R R

Namespace: this brea

ks DtdToHaskell,

currently removed

#default namespace pgip = “http ://proofgeneral.inf.ed.ac.uk/pgip”

include “pgml.rnc”

name_attr = attribute name { token }
thyname_attr = attribute thyname { token }
thmname_attr = attribute thmname { token }

datetime_attr =
attribute datetime

url_attr = attribute

dir_attr = attribute

systemdata_attr =
attribute

{ xsd:dateTime }
url { xsd:anyURI }
dir { string }

systemdata { token }?

include PGML grammar

names are user—level textual identifiers (space—collapse

names for theories (special case of name)
names for theorems (special case of name)

CCYY-MM-DDHH:MM:SS plus timezone info
URLs (often as "file :///localfilename.extn”)
Unix—style directory name (no final slash)

system—specific data (useful for ”stateless” RPC)

21

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%
97
98
99

100

101

102

103

104

105

106

107

109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

objname = token
objnames = token

#objnames = string

an identifier name (convention: any characters except semi—colon)
sequence of names in an attribute : semi—colon separated

A sequence of objnames

#termobjname = string { pattern = "[";]+;” } # unfortunately these declarations don’t
#objnames = objname | (termobjname, objname) # work with the BNG—>DTD tool trang
#objnames = objname+
e — == == == ==
1. Top—level Messages/documents
. ——— = == == S ——
start = pgip # Single message
| pgips # A log of messages between components
| displayconfig # displayconfig as a standalone element
| pgipconfig # pgipconfig as a standalone element
| pgipdoc # A proof script document
pgip = element pgip { # A PGIP packet contains:
pgip-attrs , # — attributes with header information ;
(toprovermsg | todisplaymsg | # — a message with one of four channel types
fromprovermsg | fromdisplaymsg
| internalmsg)
}
pgips = element pgips { pgip+ }
pgip_attrs =
attribute tag { token }?, # message tag, e.g. name of origin component (diagnostic)
attribute id { token }, # (unique) session id of this component
attribute destid { token }?, # session id of destination component
attribute class { pgip-class }, # general categorization of message
attribute refid { token }7?, # component id this message responds to (usually destid)
attribute refseq { xsd:positivelnteger }?, # message sequence this message responds to
attribute seq { xsd:positivelnteger } # sequence number of this message
pgip_class = "pg” # message sent TO proof general broker (e.g. FROM proof assistant).
| "pa” # message sent TO the proof assistant/other component
| "pd” # message sent TO display/front—end components
toprovermsg = # Messages sent to the prover (class "pa’”):
proverconfig # query Prover configuration, triggering interface configuration
| provercontrol # control some aspect of Prover
| improperproofcmd # issue a proof command
| improperfilecmd # issue a file command
| properproofcmd # [NB: not strictly needed: input PGIP processing not expected]
| properfilecmd # [NB: not strictly needed: input PGIP processing not expected]
| proofctxt # issue a context command
fromprovermsg = # Messages from the prover to PG (class "pg”):
kitconfig # messages to configure the interface
| proveroutput # output messages from the prover, usually display in interface
| fileinfomsg # information messages concerning file —system access / prover state
todisplaymsg = # Messages sent to display components (class "pd”):
brokermsg # status reports from broker
| dispmsg # display commands
— Further, all fromprovermsg can be relayed to display
fromdisplaymsg = # Messages sent from display components (class "pg”):
dispcmd # display messages
| brokercontrol # messages controlling broker & prover processes
— Further, all toprovermsg to be relayed to prover
======= S ——— S ——— == =
2. Component Control
e — e —— == == ==

134
135
Idea: — broker knows how to manage some components (inc provers) as child processes,
communicate via pipes. Configured by a fixed PGIP config file read on startup.
— other components may connect to running broker

137
138
139
140
141
142 # This is the element contained in the configuration file read by the
143 # broker on startup.

144 pgipconfig = element pgipconfig { componentspecx }

145

146 componentspec =

#
#
#
#
#
#

TODO: — describe startup protocol for component connecting to to running broker dynamically.

147 element componentspec {

148 componentid_attr, # Unique identifier for component class

149 componentname_attr, # Textual name of component class

150 componenttype, # Type of component: prover, display, auxiliary
151 startupattrs , # Describing startup behaviour

152 systemattrs, # System attributes for component

153 componentconnect # How to connect to component

154 }

155

156 componentid_attr = attribute componentid { token }

157 componentname_attr = attribute componentname { token }
158

159 componenttype = element componenttype {

160 provercomponent

161 | displaycomponent

162 # | filehandlercomponent

163 | parsercomponent

164 | othercomponent }

165

166 provercomponent
167 displaycomponent
168 parsercomponent
169 othercomponent
170

171 componentconnect
172 componentsubprocess | componentsocket | connectbyproxy
173

174 componentsubprocess =

element provercomponent { empty }

element displaycomponent { attribute active { xsd:boolean}? }
element parsercomponent { componentid_attr }

element othercomponent { empty }

175 element syscommand { string }

176 componentsocket =

177 (element host { token }, element port { xsd:positivelnteger })

178 connectbyproxy =

179 (element proxy { attribute host { token } # Host to connect to

180 , attribute connect {

181 "rsh” | ”ssh” # Launch proxy via RSH or SSH, needs

182 # authentication

183 | "server” # connect to running proxy on given port

184 1?

185 , attribute user { token } ? # user to connect as with RSH/SSH
186 , attribute path { token } ? # path of pgipkit on remote

187 , attribute port { xsd:positivelnteger } ? # port to connect to running proxy
188 , componentconnect

189 1)

190
191 # Attributes describing when to start the component.
192 startupattrs =

193 attribute startup { # what to do on broker startup:

194 "boot” | # always start this component (default with displays)
195 "manual” | # start manually (default with provers)

196 “ignore” # never start this component

197 1?

198

199 # System attributes describing behaviour of component.

200 systemattrs = (

201 attribute timeout { xsd:integer }? # timeout for communications
202 , attribute sync { xsd:boolean }? # whether to wait for ready

23

203 , attribute nestedgoals { xsd:boolean}? # Does prover allow nested goals?
204)

206 # Control commands from display to broker
207 brokercontrol =

208 launchprover # Launch a new prover

209 | exitprover # Request to terminate a running prover

210 | restartprover # Request to restart/reset a running prover
211 | proversquery # Query about known provers, running provers
212 | shutdownbroker # Ask broker to exit (should be wary of this!)
213 | brokerstatusquery # Ask broker for status report

214 | pgipconfig # Send config to broker

215

216 provername_attr = attribute provername { provername }

217 provername = token

218

219 proverid_attr = attribute proverid { proverid }

220 proverid = token

221

222 launchprover = element launchprover { componentid_attr }

223 exitprover = element exitprover { proverid_attr }

224 restartprover = element restartprover { proverid_attr }

225 proversquery = element proversavailable { empty }

226 brokerstatusquery = element brokerstatusquery { empty }

227 shutdownbroker = element shutdownbroker { attribute force { xsd:boolean }? }

228
229 # Control messages from broker to interface
230 brokermsg =

231 brokerstatus # response to brokerstatusquery:

232 | proveravailmsg # announce new prover (s available

233 | newprovermsg # new prover has started

234 | proverstatemsg # prover state has changed (busy/ready/exit)

235
236 brokerstatus element brokerstatus

237 { knownprovers, runningprovers, brokerinformation }

238

239 knownprover element knownprover { componentid_attr, provername }

240 runningprover = element runningprover { componentid_attr, proverid_attr, provername }
241

242 knownprovers = element knownprovers { knownproverx }

243 runningprovers = element runningprovers { runningproverx }

244 brokerinformation = element brokerinformation { string }

245

246 proveravailmsg

element proveravailable { provername_attr,

247 componentid_attr }
248 newprovermsg = element proverstarted { proverid_attr

249 , componentid_attr

250 , provername_attr

251
252 proverstatemsg = element proverstate {

253 proverid_attr, provername_attr,

254 attribute proverstate {proverstate} }
255

256 proverstate = ("ready” | "busy” | "exitus”)

257
258 # FIXME: This only allows provers to be available which are configured.

259 # In the long run, we want to change configurations while running.

260

261

262 # ======mmmmmmommmmmmm—smmm——mss——mmmmm——=e ==== C PP Y L P EEEEPEEE
263 # 3. Display Commands

264 H# ==== == == == == ================

265

266 # Messages exchanged between broker and display
267

268

269 dispcmd
270 dispmsg
271

dispfilecmd | dispobjcmd # display commands go from display to broker
dispfilemsg | dispobjmsg # display messages go from broker to display

24

272
273
274
275
276
277
278
279
280
281
282

284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309

311
312
313
314
315
316
317
318

320
321
322
323
324
325
326
327

329
330
331
332
333
334
335
336
337
338
339
340

dispfilecmd =

loadparsefile # parse and load file
| newfilewith # create new source file with given text
| dispopenfile # open (or create) new file
| savefile # save opened file
| discardfile # discard changes to opened file
dispfilemsg =
newfile # announce creation of new file (in response to load/open)
| filestatus # announce change in status of file in broker

unique identifier of loaded files
srcid_attr = attribute srcid { token }

loadparsefile
newfilewith
dispopenfile

element loadparsefile { url_attr, proverid_attr }
element newfilewith { url_attr, proverid_attr, string }
element dispopenfile { url_attr,

proverid_attr ,

attribute overwrite { xsd:boolean }?}

savefile = element savefile { srcid_attr,
url_attr? }
discardfile = element discardfile { srcid_attr }
newfile = element newfile { proverid_attr, srcid_attr, url_attr }
filestatus = element filestatus { proverid_attr, srcid_attr, newstatus_attr, url_attr?,
datetime_attr}
newstatus_attr = attribute newstatus { "saved” | ”changed” | “discarded” }
dispobjcmd =
setobjstate # request of change of state

| editobj # request edit operation of objects

| createobj # request creation of new objects
Suggested May 06: probably add re—load flags instead
| reloadobjs # request relisting of all objects

| inputcmd # process the command (generated by an input event)

| interruptprover # send interrupt or kill signal to prover

dispobjmsg = element dispobjmsg {

newobj+ # new objects have been created
| delobj+ # objects have been deleted
| replaceobjs # objects are being replaced
| objectstate+ # objects have changed state

}

newobj = element newobj {
proverid_attr,
srcid_attr ,
objid_attr ,
attribute objposition { objid } ?,
objtype_attr ?,
attribute objparent { objid }?,
attribute objstate { objstate },
FIXME: would like to include metainfo here
as (properscriptcmd, metainfox) | unparseable
(properscriptcmd | unparseable) }

replaceobjs = element replaceobjs {
srcid_attr ,
attribute replacedfrom { objid }? ,
attribute replacedto { objid }?,
delobjx, # actually , either of delobj or
newobjx } # newobj can be empty but not both.

delobj = element delobj { proverid_attr, srcid_attr, objid_attr }

update to display
objectstate = element objstate

25

341
342

344
345
346
347
348
349
350
351

353
354
355
356
357
358
359
360

362
363
364
365
366
367
368
369

371
372
373
374
375
376
377
378

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

{ proverid_attr, srcid_attr, objid_attr,
attribute newstate {objstate} }

update from display
setobjstate = element setobjstate
{ objid_attr, attribute newstate {objstate} }

editobj = element editobj { srcid_attr ?,
attribute editfrom { objid }?,
attribute editto { objid }?,
string }
createobj = element createobj { srcid_attr ?,
attribute objposition { objid }?,
string }

Suggested May 06: probably add re—load flags instead
reloadobjs = element reloadobjs { srcid_attr }

inputcmd element inputcmd { improper_attr, string }
improper_attr = attribute improper { xsd:boolean }

interruptprover = element interruptprover
{ interruptlevel_attr, proverid_attr }

interruptlevel_attr = attribute interruptievel { ”"interrupt” | ”"stop” | "kill” }
objid_attr = attribute objid { objid }
objid = token
objstate =
("unparseable” | “"parsed” | “being_processed” | ”"processed” | “outdated”)
========mmmmmmm——m——== == == ===

4. Prover Configuration

proverconfig =

askpgip # what version of PGIP do you support?

| askpgml # what version of PGML do you support?

| askconfig # tell me about objects and operations

| askprefs # what preference settings do you offer?

| setpref # please set this preference value

| getpref # please tell me this preference value
prefcat_attr = attribute prefcategory { token } # e.g. “"expert”, ”internal”, etc.

could be used for tabs in dialog
askpgip = element askpgip { empty }
askpgml = element askpgml { empty }
askconfig = element askconfig { empty }
askprefs = element askprefs { prefcat_attr? }
setpref = element setpref { name_attr, prefcat_attr?, pgipvalue }
getpref = element getpref { name_attr, prefcat_attr? }
. R ——— == S ———
5. Interface Configuration
R p— R p— R g R =
kitconfig =
usespgip # | support PGIP, version

| usespgml # | support PGML, version

| pgmlconfig # configure PGML symbols

| proverinfo # Report assistant information

| hasprefs # | have preference settings

26

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432
433
434

436
437
438

440
441
442
443
444
445
446
447
448
449
450
451
452

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

| prefval # the current value of a preference is

| displayconfig # configure the following object types and operations
| setids # inform the interface about some known objects

| addids # add some known identifiers

| delids # retract some known identifers

| idvalue # display the value of some identifier

| menuadd # add a menu entry

| menudel # remove a menu entry

version reporting
version_attr = attribute version { token }
usespgml = element usespgml { version_attr }
usespgip = element usespgip { version_attr

, activecompspec

}

These data from the component spec which an active component can override, or which

components initiating contact with the broker (e.g. incoming socket connections).

There are some restrictions: if we start a tool, the componentid and the type must be the
same as initially specified.

activecompspec = (componentid_attr? # unique identifier of component class
, componentname_attr? # Textual name of this component (overrides initial spec)
, componenttype? # Type of component
, systemattrs # system attributes

, acceptedpgipelems? # list of accepted elements

acceptedpgipelems

element acceptedpgipelems { singlepgipelemx }

singlepgipelem = element pgipelem {
attribute async { xsd:boolean }?, # true if this command supported asynchronously (deflt false)
(otherwise part of usual ready/sync stream)

attribute attributes { text }?, # comma-separated list of supported optional attribute names
useful for: times attribute
text } # the unadorned name of the PGIP element (xnotx an element)

PGML configuration
pgmliconfig = element pgmliconfig { pgmlconfiguration }

Types for config settings: corresponding data values should conform to canonical
representation for corresponding XML Schema 1.0 Datatypes.

#

In detail :

pgipnull = empty

pgipbool = xsd:boolean = true | false

pgipint = xsd:integer = (—)?(0—9)+ (canonical: no leading zeroes)

pgipstring = string = <any non—empty character sequence>

pgipchoice = cf xs:choice = typel | type2 | ... | typen

pgiptype = pgipnull | pgipbool | pgipint | pgipstring | pgipchoice | pgipconst
pgipnull = element pgipnull { descr_attr?, empty }

pgipbool = element pgipbool { descr_attr?, empty }

pgipint = element pgipint { min_attr?, max_.attr?, descr_attr?, empty }
min_attr = attribute min { xsd:integer }

max_attr = attribute max { xsd:integer }

pgipstring = element pgipstring { descr_attr?, empty }

pgipconst = element pgipconst { name_attr, descr_attr?, empty }

pgipchoice = element pgipchoice { pgiptype+ }

Notes on pgipchoice:

1. Choices must not be nested (i.e. must not contain other choices)

2. The description attributes for pgipbool, pgipint, pgipstring and pgipconst
are for use with pgipchoice: they can be used as a user—visible label
when representing the choice to the user (e.g. in a pull—down menu).

3. A pgipchoice should have an unambiguous representation as a string. That means
all constants in the choice must have different names, and a choice must not
contain more than one each of pgipint, pgipstring and pgipbool.

HH R R H®HRR

27

479
480 pgipvalue = string
481
42 icon = element icon { xsd:base64Binary } # image data for an icon
483
484 # The default value of a preference as a string (using the unambiguous
485 # conversion to string mentioned above). A string value will always be quoted
486 # to distinguish it from constants or integers.
4s7 default_attr = attribute default { token }
488
489 # Description of a choice. If multi—line, first line is short tip.
490 descr_attr = attribute descr { string }
491
492 # icons for preference recommended size: 32x32
493 # top level preferences: may be used in dialog for preference setting
494 # object preferences: may be used as an “"emblem” to decorate
object icon (boolean preferences with default false, only)
496 haspref = element haspref {
497 name_attr, descr_attr?,
498 default_attr?, icon?,
499 pgiptype
500 }
501
502
503
s04 hasprefs = element hasprefs { prefcat_attr?, haspref« }
505
so6 prefval = element prefval { name_.attr, pgipvalue }
507
s08 # menu items (incomplete, FIXME)
s0o path_attr = attribute path { token }
510
511 menuadd
52 menudel
513 opn_attr
514
515

element menuadd { path_attr?, name_attr?, opn_attr? }
element menudel { path_attr?, name_attr? }
attribute operation { token }

st6 # Display configuration information:

517 # basic prover information, lexical structure of files,

si8 # an icon for the prover, help documents, and the

519 # objects, types, and operations for building proof commands.

520

st # NB: the following object types have a fixed interpretation
522 # in PGIP:

523 # “identifier”: an identifier in the identifier syntax
524 # “comment”: an arbitrary sequence of characters
525 # “theorem ”: a theorem name or text

526 # “"theory” : a theory name or text

527 # "file” : a file name

528
s29 displayconfig =

530 element displayconfig {
531 welcomemsg?, icon?, helpdocx*, lexicalstructure x,
532 objtypex, opnx }

533
s34 objtype = element objtype { name_attr, descr_attr?, icon?, containsx, hasprefs? }

53 Objtype_attr = attribute objtype { token } # the name of an objtype

s37 contains = element contains { objtype_attr, empty } # a container for other objtypes
538

539 opn = element opn {

540 name_attr,

541 descr_attr?,

542 inputform?, # FIXME: can maybe remove this?

543 opsrcx, # FIXME: incompat change wanted: have list of source elts, not spaces
544 optrg,

545 opcmd,

546 improper_attr? }

547

28

548 OpPSIC =

549 element opsrc {

550 name_attr?, # %hame as an alternative to %humber

551 selnumber_attr?, # explicit number for %number, the nth item selected

552 prompt_attr?, # prompt in form or tooltip in template

553 listwithsep_attr?, # list of args of this type with given separator

554 list { tokenx } } # source types: a space separated list

555 # FIXME incompat change wanted: just have one source here
556 # FIXME: need to add optional pgiptype

557

ss8 listwithsep_attr = attribute listwithsep { token }

s59 selnumber_attr = attribute selnumber { xsd:positivelnteger }

s60 prompt_attr = attribute prompt { string }

561

s62 optrg =

563 element optrg { token }? # single target type, empty for proof command
s64 opcmd =

565 element opcmd { string } # prover command, with printf—style "%1’—args
566 # (whitespace preserved here: literal text)

567

s68 # interactive operations — require some input

se9 inputform = element inputform { field+ }

570

s71 # a field has a PGIP config type (int, string, bool, choice(c1...cn)) and a name; under that
s72 # name, it will be substituted into the command Ex. field name=number opcmd="rtac %1 %number”
573

s74 field = element field {

575 name_attr, pgiptype,
576 element prompt { string }
577}

578

s79 # identifier tables: these list known items of particular objtype.
ss0 # Might be used for completion or menu selection, and inspection.
sst # May have a nested structure (but objtypes do not).

582

ss3 setids = element setids { idtablex } # (with an empty idtable, clear table)
se¢4 addids = element addids { idtablex }
sss delids = element delids { idtablex }

586

s87 # give value of some identifier (response to showid; same values returned)
ses idvalue = element idvalue

589 { thyname_attr?, name_attr, objtype_attr, pgml }

590

591 idtable
s02 identifier
593

s94 context_attr = attribute context { token } # parent identifier (context)

595

s96 # prover information:

s97 # name, instance (e.g. in case of major parameter of invocation);

se8 # description, version, homepage, welcome message, docs available

s99 proverinfo = element proverinfo

600 { name._attr, version_attr?, instance_attr?,

601 descr_attr?, url_attr?, filenameextns_attr?,

602 ## TEMP: these elements are duplicated in displayconfig, as they’re

603 ## moving there.

604 welcomemsg?, icon?, helpdocxk, lexicalstructurex }

605

606 instance_attr = attribute instance { token }

607

eos welcomemsg = element welcomemsg { string }

609

et0 # helpdoc: advertise availability of some documentation, given a canonical

611 # name, textual description, and URL or viewdoc argument.

612 #

613 helpdoc = element helpdoc { name_attr, descr_attr, url_attr?, token } # token string is arg to “viewdoc
614

615 filenameextns_attr = attribute filenameextns { xsd:NMTOKENS } # space—separated extensions sans
616

element idtable { context_attr?, objtype_attr, identifierx }
element identifier { token }

o

29

617 # lexical structure of proof texts
618 lexicalstructure =

619 element lexicalstructure {
620 keyword x ,

621 stringdelimiter ?,

622 escapecharacter?,

623 commentdelimiter x,

624 identifiersyntax?

625 }

626
627 keyword = element keyword {

628 attribute word { token },
629 shorthelp ?,
630 longhelp? }

631

632 shorthelp = element shorthelp { string } # one—line (tooltip style) help

633 longhelp element longhelp { string } # multi—line help

634

635 stringdelimiter = element stringdelimiter { token } # should be a single char

636

637 # The escape character is used to escape strings and other special characters — in most languages it is
638 escapecharacter = element escapecharacter { token } # should be a single char

639

640 commentdelimiter = element commentdelimiter {

641 attribute start { token },
642 attribute end { token }?,
643 empty

644 }

645

647 # syntax for ids: id = initial allowed+ or id = allowed+ if initial empty
e4s identifiersyntax = element identifiersyntax {

649 attribute initialchars { token }?,

650 attribute allowedchars { token }

651 }

652

658 # ===================== == == O ——

es4 # 6. Prover Control

655 # ========= == == == == ===================

656
657 provercontrol =

658 proverinit # reset prover to its initial state
659 | proverexit # exit prover
660 | setproverflag # set/clear a standard control flag

661
662 proverinit element proverinit { empty }
663 proverexit = element proverexit { empty }

665 setproverflag element setproverflag { flagname_attr,

666 attribute value { xsd:boolean } }
667 flagname_attr =
668 attribute flagname { ”"quiet”

669 |
670 |
671 }
672

673 # General prover output/responses

674

675 # Prover output has an otional proverid_attribute. This is set by the broker when relaying
676 # prover output to displays. When producing output, provers can and should not set this
677 # attribute.

678

679 proveroutput =

"pgmlsymbols”
"metainfo :thmdeps”

680 ready # prover is ready for input

681 | normalresponse # prover outputs, no error condition

682 | errorresponse # prover indicates an error/warning/debug condition, with message
683 | scriptinsert # some text to insert literally into the proof script

684 | metainforesponse # prover outputs some other meta—information to interface

685 | parseresult # results of a <parsescript> request (see later)

30

686

687

688 ready = element ready { empty }
689

690 normalresponse =

691 element normalresponse {

692 proverid_attr?, # if no proverid, assume message is from broker
693 pgml

694 }

695
696

698 ## Error messages: these are different from ordinary messages in that

699 ## they indicate an error condition in the prover, with a notion

700 ## of fatality and (optionally) a location. The interface may collect these
701 ## messages in a log, display in a modal dialog, or in the specified

702 ## display area if one is given

703 ##
704 ## Error responses are also taken to indicate failure of a command to be processed, but only in
705 ## the special case of a response with fatality ”“fatal”. If any errorresponse with

706 ## fatality=fatal is sent before <ready/>, the PGIP command which triggered the message is

707 ## considered to have failed. |If the command is a scripting command, it will not be added to
708 ## the successfully processed part of the document. A “nonfatal” error also indicates some

709 ## serious problem with the sent command, but it is not considered to have failed. This is the
710 ## ordinary response for

711

712 errorresponse =

713 element errorresponse {

714 proverid_attr?, # ... as above
715 attribute fatality { fatality },

716 location_attrs ,

717 pgml

718 }

719
720

721 fatality = degree of error conditions:

#
722 ”info” # — info message
723 | “warning” # — warning message
724 | "nonfatal” # — error message, recovered and state updated
725 | "fatal” # — error message, command has failed
726 | ”panic” # — shutdown condition, component exits (interface may show message)
727 | "log” # — system—level log message (interface does not show message; written to log file)
728 | ”debug” # — system—level debug message (interface may show message; written to log file)

729
730 # attributes describing a file location (for error messages, etc)
731 location_attrs =

732 attribute location_descr { string }?,

733 attribute location_url { xsd:anyURI }?,

734 attribute locationline { xsd:positivelnteger }7?,
735 attribute locationcolumn { xsd:positivelnteger }?,
736 attribute locationcharacter { xsd:positivelnteger }?,
737 attribute locationlength { xsd:positivelnteger }?

739 # instruction to insert some literal text into the document

740 scriptinsert = element scriptinsert { proverid_attr?, metavarid_attr?, string }

741

742

743 # metainformation is an extensible place to put system—specific information

744

745 value = element value { name_attr?, text } # generic value holder [deprecated: use metainfo]
746 metainfo = element metainfo { name_attr?, text } # generic info holder

747

748 metainforesponse =

749 element metainforesponse {

750 proverid_attr?,

751 attribute infotype { token }, # categorization of data
752 (value | metainfo)* } # data values/text

753
754

31

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
77
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

790
791
792

794
795
796
797

799
800
801

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

================ ================== ======================= ==
7. Proof script markup and proof control

——————m—————————— S —— R —————————————————————
properproofcmds are purely markup on native proof script (plain) text
properproofcmd =
opengoal # open a goal in ambient context
| proofstep # a specific proof command (perhaps configured via opcmd)
| closegoal # complete & close current open proof (succeeds iff proven, may close nested pf)
| giveupgoal # close current open proof, retaining attempt in script (lsar oops)
| postponegoal # close current open proof, record as proof obl’n (lsar sorry)
| comment # a proof script comment; text probably ignored by prover
| doccomment # a proof script document comment; text maybe processed by prover
| whitespace # a whitespace comment; text ignored by prover
| spuriouscmd # command ignored for undo, e.g. “print x”, could be pruned from script
| badcmd # a command which should not be stored in the script (e.g. an improperproofcmd)
| litcomment # a PGIP literate comment (never passed to prover)
| pragma # a document generating instruction (never passed to prover)

improperproofcmds are commands which are never stored in the script

improperproofcmd =
dostep # issue a properproofcmd (without passing in markup)
| undostep # undo the last proof step issued in currently open goal
| redostep # redo the last undone step issued in currently open goal (optionally supported)
| abortgoal # give up on current open proof, close proof state, discard history
| forget # forget a theorem (or named target), outdating dependent theorems
| restoregoal # re—open previously postponed proof, outdating dependent theorems

scriptmarkup = pgml | text

opengoal = element opengoal { thmname_attr?, scriptmarkup } # TODO: add objprefval
proofstep = element proofstep { name_attr?, objtype_attr?, scriptmarkup }

closegoal = element closegoal { scriptmarkup }

giveupgoal = element giveupgoal { scriptmarkup }

postponegoal = element postponegoal { scriptmarkup }

comment = element comment { scriptmarkup }

doccomment = element doccomment { scriptmarkup }

whitespace = element whitespace { scriptmarkup }

spuriouscmd = element spuriouscmd { scriptmarkup } # no semantic effect (e.g. print)
badcmd = element badcmd { scriptmarkup } # illegal in script (e.g. undo)
nonscripting = element nonscripting { scriptmarkup } # non—scripting text (different doc type)
litcomment = element litcomment { format_attr?, (text | directive)x }

directive = element directive { (proofctxt,pgml) }

format_attr = attribute format { token }

pragma = showhidecode | setformat

showhidecode = element showcode { attribute show { xsd:boolean } }
setformat = element setformat { format_attr }

dostep = element dostep { string }

undostep = element undostep { times_attr? }

redostep = element redostep { times_attr? }

abortgoal = element abortgoal { empty }

forget = element forget { thyname_attr?, name_attr?, objtype_attr? }
restoregoal = element restoregoal { thmname_attr }

times_attr = attribute times { xsd:positivelnteger }

empty objprefval element is used for object prefs in script markup

objprefval = element objprefval { name_attr, val_attr, empty }
val_attr = attribute value { token }
J—— —_—== ====

32

824
825

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

881
882
883
884
885
886
887
888
889
890
891
892

Inspecting the proof context, etc.

NB: ids/refs/parent: work in progress, liable to change.

proofctxt =
askids # tell me about identifiers (given objtype in a theory)

| askrefs # tell me about dependencies (references) of an identifier
| askparent # tell me the container for some identifier

| showid # print the value of some object

| askguise # tell me about the current state of the prover

| parsescript # parse a raw proof script into proofcmds

| showproofstate # (re)display proof state (empty if outside a proof)

| showctxt # show proof context

| searchtheorems # search for theorems (prover—specific arguments)

| setlinewidth # set line width for printing

| viewdoc # request some on—line help (prover—specific arg)

askids = element askids { thyname_attr?, objtype_attr? }
Note that thyname_attr is xrequired+ for certain objtypes (e.g. theorem).
This is because otherwise the list is enormous.
Perhaps we should make thyname_attr obligatory?
With a blank entry (i.e. thyname="") allowed for listing theories, or for when
you really do want to see everything (could be a shell-style glob)

askids: container —> identifiers contained within

askparent: identifier + type + context —> container

askrers: identifier + type + context — identifiers which are referenced
#

askrefs = element askrefs { url_attr?, thyname_attr?, objtype_attr?, name_attr? }

TODO: maybe include guises here as indication of reference point.

setrefs in reply to askrefs only really needs identifiers, but it’s nice to

support voluntary information too.

setrefs = element setrefs { url_attr?, thyname_attr?, objtype_attr?, name_attr?, idtable x,
fileurl = element fileurl { url_attr }

telldeps = element telldeps { thyname_attr?, objtype_attr, name_attr?, identifierx }

Ildea: for a theory dependency we return a single file (URL), the containing file.

for a file dependency we return urls of parent files,
for theorem dependency we return theory
for term dependency we return definition (point in file)

showid = element showid { thyname_attr?, objtype_attr, name_attr }

askguise = element askguise { empty }

showproofstate = element showproofstate { empty }

showctxt = element showctxt { empty }

searchtheorems = element searchtheorems { string }
setlinewidth = element setlinewidth { xsd:positivelnteger }
viewdoc = element viewdoc { token }

== =

Proof script documents and parsing proof scripts

A PGIP document is a sequence of script commands, each of which
may have meta information attached.

properscriptcmdmetainfo = properscriptcmd | metainfo

pgipdoc = element pgipdoc { properscriptcmdmetainfox }

NB: parsing needs only be supported for “proper” proof commands,

which may appear in proof texts. The groupdelimiters are purely
markup hints to the interface for display structure on concrete syntax.
The location attributes can be used by the prover in <parsescript> to
generate error messages for particular locations; they can be used

in <parseresult> to pass position information back to the display,
particularly in the case of (re—)parsing only part of a file.

HH R R HRR

33

fileurls }

893
894
895
896
897
898
899
900
901
902
903

905
906
907
908
909
910
911
912

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

932
933
934
935
936
937
938
939

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

The parsing component MUST return the same location attributes
(and system data attribute) that was passed in.

parsescript = element parsescript
{ location_attrs , systemdata_attr, string }

parseresult = element parseresult { location_attrs, systemdata.attr,
singleparseresult« }

Really we’d like parsing to return properscriptcmdmetainfo as a single
result (and similarly for newobj).

Unfortunately , although this is an XML-transparent extension, it
messes up the Haskell schema—fixed code rather extensively, so for
now we just treat metainfo at the same level as the other results,
although it should only appear following a properscriptcmd.

R W R ™R

singleparseresult = properscriptcmd | metainfo | unparseable | errorresponse

unparseable = element unparseable { scriptmarkup }
properscriptcmd = properproofcmd | properfilecmd | groupdelimiter | text

groupdelimiter = openblock | closeblock

openblock = element openblock {
name_attr?, objtype_attr?,
metavarid_attr?, positionid_attr?,
fold_attr?, indent_attr?,
display_attr? }

closeblock = element closeblock { empty }

metavarid_attr = attribute metavarid { token } #

positionid_attr = attribute positionid { token } #

fold_attr = attribute fold { xsd:boolean } # whether to enable folding for this block
indent_attr = attribute indent { xsd:integer } # whether to indent this block [attrib in
display_attr = attribute nodisplay { xsd:boolean } # whether to display in documentation

== m=================== =

Theory/file handling

properfilecmd = # (NB: properfilecmds are purely markup on proof script text)
opentheory # begin construction of a new theory.
| theoryitem # a step in a theory (e.g. declaration/definition of type/constant).
#

| closetheory complete construction of the currently open theory

improperfilecmd =

doitem # issue a proper file command (without passing in markup)
| undoitem # undo last step (or named item) in theory construction
| redoitem # redo last step (or named item) in theory construction (optionally supported)
| aborttheory # abort currently open theory
| retracttheory # retract a named theory
| openfile # signal a file is being opened for constructing a proof text interactively
| closefile # close the currently open file, suggesting it has been processed
| abortfile # unlock a file , suggesting it hasn’t been processed
| loadfile # load (i.e. process directly) a file possibly containing theory definition(s)
| retractfile # retract a given file (including all contained theories)
| changecwd # change prover’s working directory (or load path) for files
| systemcmd # system (other) command, parsed internally

fileinfomsg =

informfileloaded # prover informs interface a particular file is loaded
| informfileretracted # prover informs interface a particular file is outdated
| informguise # prover informs interface about current state
opentheory = element opentheory { thyname_attr, parentnames_attr?, scriptmarkup }

closetheory

element closetheory { scriptmarkup }

theoryitem = element theoryitem { name_attr?, objtype_attr?, scriptmarkup } # FIXME: add objprefy

34

962
963

965
966
967
968
969
970
971
972

974
975
976
977
978
979
980
981

983
984
985
986
987
988
989
990

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

doitem = element doitem { string }

undoitem = element undoitem { name_attr?, objtype_attr?, times_attr? }
redoitem = element redoitem { name_attr?, objtype_attr?, times_attr? }
aborttheory = element aborttheory { empty }

retracttheory = element retracttheory { thyname_attr }

parentnames_attr = attribute parentnames { objnames }

Below, url_attr will often be a file URL. We assume for now that
the prover and interface are running on same filesystem.

#

openfile = element openfile { url_attr } # notify begin reading from given file
closefile = element closefile { empty } # notify currently open file is complete
abortfile = element abortfile { empty } # notify currently open file is discarded
loadfile = element loadfile { url_attr } # ask prover to read file directly
retractfile = element retractfile { url_attr } # ask prover to retract file

changecwd = element changecwd { url_attr } # ask prover to change current working dir

this one not yet implemented, but would be handy. Perhaps could be
locatethy/locatefile instead.
#locateobj = element locateobj { name_attr, objtype_attr } # ask prover for file defining obj

informfileloaded element informfileloaded { completed_attr?,
url_attr } # prover indicates a processed file
informfileretracted = element informfileretracted { completed_attr?,
url_attr } # prover indicates an undone file
informfileoutdated = element informfileoutdated { completed_attr?,

url_attr } # prover indicates an outdated file

informfilelocation = element informfilelocation { url_attr } # response to locateobj

completed_attr = attribute completed { xsd:boolean } # false if not completed (absent=>true)
(the prover is requesting a lock)

informguise =
element informguise {
element guisefile { url_attr }?,
element guisetheory { thyname_attr }?,
element guiseproof { thmname_atir?, proofpos_attr? }?

}
proofpos_attr = attribute proofpos { xsd:nonNegativelnteger }
systemcmd = element systemcmd { string } # "shell escape”, arbitrary prover command!
m============== m============ == ===================
8. Internal messages: only used between communicating brokers.
==== S — e — S— S =
internalmsg = launchcomp | stopcomp | registercomp | compstatus
launchcomp = element launchcomponent { componentspec }
request to start an instance of this component remotely
stopcomp = element stopcomponent { attribute sessionid { token } }

request to stop component with this session id remotely

registercomp

element registercomponent { activecompspec }
component has been started successfully
element componentstatus { componentstatus_attr # status
, componentid_attr? # component id (for failure)
, element text { string }? # user—visible error message
, element info { string }? # Additional info for log files.

compstatus

component status: failed to start, or exited

35

1031
1032
1033
1034
1035
1036
1037
1038
1039

componentstatus_attr = attribute status { (”fail”

Local variables:
fill —column: 95
End:

|uexit”

)}

component failed to start

component exited

e —————————
end of ‘pgip.rnc’.

36

© 00 N O g B~ W N =

D O O ;O ;O O O g g o0 g o g oo g oo g b~ B B B B B B B BB OWWwW W W oWwooWwWwwWwwWwwWw NN NN N NN NDND S s d
o O A W N - O © 0 N OO b~ 0N = O 0 0o N O O & OO0 = 0O © 00N O & ON < O O o0 N OO B~ WUN = O O 0o N O O B~ WD = O

A.2 pgml.rnc

HHEB IR BRI RESR

With thanks to:
Cezary Kaliszyk , Makarius Wenzel

RELAX NG Schema for PGML, the Proof General Markup Language

Authors: David Aspinall, LFCS, University of Edinburgh
Christoph L th , University of Bremen

Version: $Id: pgml.rnc,v 3.12 2007/07/11 10:21:12 da Exp $

Status: Complete, prototype.

This is a simple markup language for annotating prover input and output
text. Annotations can be used to provide pretty printing or additional
structure on already pretty—printed text. The markup is intended to be
further transformed (e.g. by system—specific stylesheets) to produce
HTML or other display forms.

For additional commentary, see accompanying commentary document
(available at http ://proofgeneral.inf.ed.ac.uk/kit)

Advertised version: 2.0

Namespace: this breaks DtdToHaskell, currently removed
#default namespace pgip = “http ://proofgeneral.inf.ed.ac.uk/pgip”

##

PGML terms with pretty printing, actions, references and embedded objects.

##
term

sym | atom | box | break | subterm | alt | embed | text

A named symbol may have a previously configured alternative
rendering (see below) or be rendered as the given text

sym
symname_attr

element sym { symname_attr, text }
attribute name { xsd:NMTOKEN } # names must be [a—zA-Z][a—zA-Z0—9]+

An atom is some text (maybe including symbols), with an optional
kind which may control its printing by a prover—specific style

sheet.
atom
kind_attr

A box whose

box
orient_attr
indent_att

A line/colum
is not broke
break

mandatory_attr

element atom { kind_attr?, (text | sym)x }
attribute kind { token }

children may be displayed with different layout strategies, using
the directives of BoxML (see http ://helm.cs.unibo. it/mmiwidget/qna.html).
The children of the box may have: fixed horizontal or vertical layout,

horizontal or vertical with inconsistent breaking (”hov”, the default),

or horizontal or vertical with consistent breaking ("hv”).

Inside a box,
if a line break is added. Note and spaces/newlines in the markup are
NOT obeyed (eprICIt spaces must be given with atoms).

the given indentation space is applied to children

element box { orient_attr?, indent_att?, termx }
attribute orient { "hov” | "h” | "v” | "hv” }

= attribute indent { xsd:integer }

n

n.

breaking hint. The indentation is added if the line
Consistent breaking will take all breaks at the same level.

= element break { mandatory_attr?, indent_att? }

attribute mandatory { xsd:boolean }

An annotated subterm. This may be used to:

##

— subdivide large displays (e.g. goal state by subgoals, assumptions)
using the kind and parameter tokens (system specific interpretation);
— mark an identifer or term with an objtype (and perhaps a global name);

37

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

— decorate a region with a bold, italic, or other highlight (e.g.,

to markup error/warning/info areas with squiggles red/yellow/blue).
— reference to a content model with position annotations

— indicate an action such as a system—specific menu, folding (”toggle”)
or render a button

— give a cross reference to the defining point of some text

(e.g. file URL with line.column fragment)

##
subterm = element subterm { skind_attr?, sparam_attr?,
splace_attr?, sdec_attr?, sobjtype_attr?, sname_attr?,
saction_attr?, spos_attr?, sref_attr?, term }
skind_attr = attribute kind { token }

sparam_attr attribute param { token }

splace_attr = attribute place { "sub” | "super” | ”above” | ”"below” }
sobjtype_attr attribute objtype { token }

sname_attr attribute name { token }

sdec_attr = attribute decoration { ”bold” “italic” | “error” | ”"warning” | “information”
saction_attr = attribute action { “toggle” | “button” | "menu” }

spos_attr = attribute pos { token }

sref_attr = attribute xref { xsd:anyURI }

Alternative subtrees. This may be used to select between subtrees based on
the kind, for example, alternate renderings according available space, or
alternate embedded objects according to target language.

alt = element alt { altkind_attr, termx }

altkind_attr = attribute kind { token }

An embedded object. The object embedded would typically be in a
different markup language (e.g. MathML).
embed = element embed { text }

#it
PGML documents
##

pgml = element pgml { pgml_version_attr?, systemid_attr?,
area_attr?, terms }

Version of PGML. Useful for standalone documents. Broker may add.
pgml_version_attr = attribute version { xsd:NMTOKEN }

System that produced PGML. Useful for standalone documents. Broker may add.
systemid_attr = attribute systemid { token }

Display area (e.g., window) for showing message. Only relevant for output;
default area is message in this case.

area_attr =
attribute area {

”status” # a status line
| "message” # the message area
| "display” # the proof state display area
| "tracing” # tracing output
| “internal” # debug/log message, not displayed
| token # prover—specified window name

}

This schema is embedded into the PGIP schema. If we would
keep them separate, we would add the start production here:
##

start = pgml

##
Symbol configuration
##

38

| token

136 ## The sym element can be rendered in three different ways,
137 ## in descending preference order:

138 ##

139 ## 1) one of the previously configured alternatives for the symbol,
140 ## available in a prover—specific configuration, see below.

141 ## 2) the PGML symbol given by the name attribute , if one of

142 ## standard (TeX-ish) names given elsewhere (deprecated).

143 ## 3) the text content of the SYM element, if non—empty

144 ##

145 ## The symbol configuration allows flexible choice between

146 ## different renderings.

147 ##

148

149 ## A configuration of PGML is a sequence of symbol configurations
150 pgmlconfiguration = symconfigsx

151

152 ##
153 ## A symbol configuration provides:
154 ##

155 ## a (unique) symbol name, used in the <synr> element

156 ## a family name (user documentation only)

157 ## a unicode character sequence

158 ## an HIML alternative using HIML entities (in plain ASCIl)

159 ## a plain text alternative for impoverished ASCIl displays

160 ## a token text which can be used in the document in place of the unicode sequence
161 ## to store files in a poorer ASCIl/latin/other encoding

162 ## a typing shortcut that may be supported by editors in displays

163 ## an xml rendering (in some other XML schema)

164 ##

165 ## e.g.

166 ##

167 ## <symconfig name="Forall” family="Symbols” unicode=" ” shortcut="all ”
168 ## html="&forall ;” token="\<forall >" alt="ALL" />

169 ##

170 ## Symbol configurations are prover specific. They may be shared
171 ## between displays, although different displays may use different
172 ## parts of configurations.

173

174 symconfig =

175 element symconfig { symname_attr, family_attr?,
176 unicode_attr?, html_attr?, textalt_attr?,
177 token_attr?, shortcut_attr?, xmlrender? }
178

179 family_attr = attribute family { string }

180 unicode_attr = attribute unicode { string }
181 html_attr = attribute html { string }

182 textalt_attr = attribute alt { string }

183 token_attr = attribute token { string }

184 shortcut_attr = attribute shortcut { string }
185 xmlrender = element xmirender { text }

39

