
Optimizing Coalgebraic Modal Logic Reasoning

Daniel Hausmann?

Department of Computer Science, Universität Bremen
hausmann@informatik.uni-bremen.de

Abstract. The framework provided by coalgebraic modal logics offers
broadly applicable coalgebraic semantics and an ensuing general treat-
ment of modal sequent and tableau calculi while covering a wide variety
of logics ranging from graded and probabilistic modal logic to coali-
tion logic and conditional logics. Here we discuss generic optimisation
strategies that may be employed to improve the performance of a global
caching algorithm that decides the satisfiability of coalgebraic modal
logics. Specifically, we discuss and show the admissability of generalisa-
tions of such established strategies as semantic branching and dependency
directed backtracking to coalgebraic modal logics. As a more advanced
consideration, the flattened representation of the involved proof graph
by a proof formula is shown to be sound and complete; this separa-
tion of proof structure from the actual content of the proof does not
only enhance the performance of the propagation process, it also allows
for further optimisation techniques such as proof graph simplification to
be applied. The presented optimisation techniques are implemented as
part of the examplary implementation, the Coalgebraic Logic Satisfiabil-
ity Solver(CoLoSS).

1 Introduction

Coalgebraic modal logic has been established as a unifying framework for many
modal logics [6], allowing for generic and efficient decision of satisfiability (and
provability) of those modal logics. In this context, the Coalgebraic Logic Satisfia-
bility Solver(CoLoSS 1) serves as an examplary implementation of the developed
algorithms and as a testsuite for their optimisations [1, 3]. The broader focus
introduces new difficulties to the process of proving satisfiablity (or provablility)
of a formula, especially since the considered logics do not necessarily branch only
on disjunctions (or conjunctions respectively) but may also introduce branching
through their modal rules. Recent research in the area of coalgebraic modal log-
ics has shown that the satisfiability (and provability) of coalgebraic logics with
global assumptions may be decided in EXPTIME by means of an optimal global
caching algorithm, thus enabling support for (basic) description logics in the
coalgebraic setting [2]. The introduced algorithm is based on graph rewriting,

? Work forms part of DFG-project Generic Algorithms and Complexity Bounds in
Coalgebraic Modal Logic (SCHR 1118/5-1)

1 available under http://www.informatik.uni-bremen.de/cofi/CoLoSS/

however it has the weakness that the propagation of satisfiability through the
graph is realized by computing fixpoints of the complete graph w.r.t specific
functionals.

This work aims at improving the performance of said algorithm in two direc-
tions:

1. Established optimisation techniques for specific logics (such as K) are gen-
eralized and the generalizations are shown to be correct, thus allowing for
these techniques to be applied for any coalgebraic modal logic.

2. Proof formulas, a flattened representation of the central data structure of the
global caching algorithm (i.e. the proof graph) are introduced. The process
of propagation may then be realized as a simple process of propositional
simplification in the proof formula (thus making it feasable to propagate
after each step of expansion).

The paper is structured as follows: We first give a short overview over coal-
gebraic modal logics. Then we briefly recall an optimal global caching algorithm
that decides the provability of coalgebraic modal logics (with global assump-
tions). As the central contribution of the paper, we then turn our attention
to the optimisation of said algorithm, focussing on three particular optimisation
techniques: Generic semantic branching, generic dependency directed backtrack-
ing and efficient propagation by the use of proof formulas. The admissabilty of
each of these generic optimization techniques is proved.

2 Coalgebraic Modal Logic

We quickly recall the needed notions from the domain of coalgebraic modal
logic [6]:

2.1 Notation

Given an endofunctor on sets T , a T -coalgebra C consists of a carrier-set C and
a function γ : C → T (C).

The semantics of modal operators ♥ ∈ Λ is then defined by means of predicate
liftings [[♥]] : 2n → 2 ◦ T op where 2 : Set → Setop denotes the contravariant
powerset functor.

Formulas are of the shape

F(Λ) 3 A1, . . . , An := p | ¬A1 | A1 ∧A2 | A1 ∨A2 | ♥(A1, . . . , An)

where ♥ ∈ Λ is an n-ary modal operator.
The semantics with respect to a model coalgebra M = (C, γ, π) (where π

denotes a valuation of propositional atoms) is fixed as follows:

[[♥(A1, . . . , An)]]M = γ−1 ◦ [[♥]]C([[A1]]M , . . . , [[An]]M)

A (Λ-)sequent Γ is a set of formulas (from F(Λ)). We refer to the set of all
sequents of a logic as Seq and to the set of all sets of sequents of a logic as Prem.

A sequent rule consists of its premise Σ (a set of sequents) and its conclusion
Γ (one sequent). A rule R = (Σ = {Γ1, . . . , Γn}, Γ) is usually presented as
follows:

Γ1 . . . Γn

Γ

A rule application of rule R to sequent Γ is an instantiation of R s.t. the
conclusion of the rule is equal to Γ .

A formula φ is provable if there is a model coalgebra M = (C, γ, π) with a
state x ∈ C s.t. [[φ]] 3 x. A sequent Γ = {φ1, . . . , φn} is provable iff

∨n
i=1 φi is

provable. A premise is said to be provable iff all its sequents are provable.
A sound and complete algorithm for the decision of provability (and satis-

fiability) of formula of the according coalgebraic logic may be obtained if the
propositional rules from Figures 1 and 2 are utilized together with the appropri-
ate modal rule(s). Some examplary modal rules for different coalgebraic modal
logics are depicted in Figure 3 (for more details, refer to [6]) while the modal
rules of some conditional logics are introduced in Figure 4 (more details about
optimisation of coalgebraic conditional logics can be found in [5, 3]). The collec-
tion of all currently utilized rules is referred to as R.

(¬∨)
Γ,A Γ,B

Γ,¬(¬A ∨ ¬B)

Fig. 1. Branching propositional sequent rule

(T)
Γ,>

(At)
Γ, p,¬p

(¬¬)
Γ,A

Γ,¬¬A
(∨)

Γ,A,B

Γ, (A ∨B)

Fig. 2. Linear or closing propositional sequent rules

Take note that the rules from Figure 2 may be integrated into the process of
normalisation, saturation or simpification (see 3.1) due to their linearity.

We introduce the following abbreviations in order to allow for a swift pre-
sentation of the modal rules of propositional and graded modal logic: Given a
formula φi and ri ∈ Z for all i ∈ I as well as k ∈ Z,∑

i∈I
riφi ≥ k ≡

∧
J⊆I,r(J)<k

(
∧
j∈J

φj →
∨
j /∈J

φj),

Modal Logic (Feature) Modal Rule(s)

M (�M)
A→ B

Γ,�MA→ �MB

K (�K)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�KAi → �KB

KD (�KD)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�KDAi → �KDB

¬
n̂

i=1

Ai

Γ,¬
n̂

i=1

�KDAi

Hennessy-Milner-Logic (�a
HM)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�a
HMAi → �a

HMB

Coalition Logic (�C
C)

n̂

i=1

Ai → B ∨
m_
j=1

Cj

Γ,

n̂

i=1

�Ci
C Ai → �D

CB ∨
m_
j=1

�N
CCj

m,n ≥ 0,
Ci pairwise disjoint subsets of D.

Graded Modal Logic (♦iG)

nX
i=1

Ai ≤
mX
j=1

Bj

Γ,

n̂

i=1

♦ki
GAi →

m_
j=1

♦
lj
GBj

n,m ≥ 0,Pn
i=1(ki + 1) ≥ 1 +

Pm
j=1 lj .

Probabilistic Modal Logic (♦pP)

nX
i=1

Ai + u ≤
mX
j=1

Bj

Γ,

n̂

i=1

♦pi
PAi →

m_
j=1

♦
qj

PBj

m,n ≥ 0, m+ n ≥ 1, u ∈ Z,Pn
i=1 pi + u ≥

Pm
j=1 qj and

m = 0→
Pn
i=1 pi + u > 0.

Fig. 3. One-step complete, resolution closed modal rules for some coalgebraic modal
logics

where r(J) =
∑
j∈J rj . Furthermore, we use

∑
ai ≤

∑
bj as an abbreviation for∑

bj −
∑
ai ≥ 0.

Modal Logic (Feature) Modal Rule(s)

CK (⇒CK)
A0 ↔ . . .↔ An ¬B1, . . . ,¬Bn, B0

Γ,

n̂

i=1

(Ai ⇒CK Bi)→ (A0 ⇒CK B0)

CK+CEM (⇒CKCEM)
A0 ↔ . . .↔ An B0, . . . , Bk,¬Bk+1, . . .¬Bn

Γ,

n̂

i=k+1

(Ai ⇒CKCEM Bi)→
k_
j=0

(Aj ⇒CKCEM Bj)

CK+CM (⇒CKCM)

Ai = Aj for i, j ∈ l(v), v ∈ G initialS
i∈l(v){¬Bi,¬Ai}, Aj for v ∈ G and j ∈ l(w)

for some successor w of v
{¬Bi | i ∈ I}, DS
i∈I{¬Bi,¬Ai}, C
¬C,Ai for i ∈ I

Γ,
^
i∈I

(Ai ⇒CKCM Bi)→ (C ⇒CKCM D)

for an I-compatibility graph G

System S (⇒SysS)
∆M (ν(M)) for each M ∈ SΓ0

Γ,
^
i∈I

(Ai ⇒SysS Bi)→ (A0 ⇒SysS B0)| {z }
≡:Γ0

where SΓ0 denotes all S-structures (S,�) over Γ0,
∆M ([i]) ≡

S
k'i{¬Ak,¬Bk}, {Aj | i ≺ j ∨ j /∈ S},

∆M ([0]) ≡ ¬A0,
S

0 6=k'0{¬Ak,¬Bk}, B0, {Aj | j /∈ S}.

Fig. 4. One-step complete, resolution closed modal rules for some conditional logics

Furthermore, we allow for the treatment of global assumptions (which may be
thought of as representing a TBox) by expanding the employed modal rules as
follows: Given a set of global assumptions ∆ and a modal rule R = Γ0, . . . , Γn/Γ ,
the expanded rule is defined as R′ = (∆ → Γ0), . . . , (∆ → Γn)/Γ , i.e. we add
the global assumptions to each newly constructed state.

The presence of global assumptions introduces the possibility of running into
circularities during the course of of the proof so that a simple sequent calculus
without blocking is no longer sufficient to solve the task (as it would possibly not
terminate). Hence we introduce an algorithm that uses global caching in order to
not only detect circular proof requirements but to also benefit from the improved
performance that comes along with the use of (global) caching techniques.

3 Global Caching Algorithm for Coalgebraic Logics

We quickly recall the global caching algorithm that was introduced in [2] while
treating provability of formulas here rather than satisfiability. However, a formula
is satisfiable whenever its negation is not provable.

3.1 The proof graph and transitions

Given a sequent Γ , we define the set of all possible rule applications to
Γ , Rules(Γ) = {(Γ,Σ) | is an instance of a rule R}, the set of those se-
quents that appear in premises of rules that are applicable to Γ , S(Γ) =
{Γ ′ | (Γ,Σ) is an instance of a rule R ∧ Γ ′ ∈ Σ}, and the set of all selections
Selections(Γ) = {(Σ,Γ ′) | (Γ,Σ) ∈ Rules(Γ) ∧ Γ ′ ∈ Σ}.

A proof graph is a tuple (A,E,U,X,L1, L2) where A,E,U ⊆ Seq are sets of
sequents, X ⊆ Prems is a set of premises. The (partial) function L1 assigns the
set Rules(Γ) to a sequent Γ whereas the (partial) function L2 assigns the set
Selections(Γ) to a sequent Γ .

The sets A und E contain those sequents which are already known to be
provable and improvable respectively. The set U contains the already expanded
but yet undecided sequents whereas the set X keeps track of those sequents that
have yet to be explored. The relations between sequents and premises are stored
in the two functions L1 and L2.

Unexpanded sequents Γ ∈ X (i.e. sequents to which no rule has been applied
yet), are also called open sequents. A proof graph with X = ∅ is called fully
expanded.

Any sequent to which either the rule (T) or the rule (At) may be applied is
called a successful leaf of the proof graph.

Any sequent Γ to which no rule may be applied (i.e. Γ is not equal to the
conclusion of any instance of any of the employed rules) is called an unsuccessful
leaf.

For the sake of readability, we will sometimes show simplified proof graphs
where only one rule application is considered for each sequent (such that only
one – the interesting one – of the possible premises of each sequent is shown).

We now fix two effectively computable transitions between proof graphs:

– Expand: Given a sequent Γ from X, this transition leads from a graph g
to the graph g′ that is obtained from g by expanding Γ . To this end, X
is extended by S(Γ) and Γ is removed from X (X ′ = (X ∪ S(Γ)) \ Γ).
Furthermore, L1 is extended by all possible rule applications for Γ (L′1 = L1∪
AR(Γ)). Finally, L2 is extended by all possible selections for rule applications
to Γ (L′2 = L2 ∪AS(Γ)).
In conclusion, this procedure applies all applicable rules to Γ , marks all
resulting premises as not yet expanded, marks Γ as expanded and stores the
implied transitions in L1 and L2.
For a fixed sequent Γ and a graph g, we denote the expansion of Γ in g by
exp(g, Γ). If g′ = exp(g, Γ), we also write g Γ→E g′.

– Propagate: This procedure evaluates the given graph as far as yet possible:
The sets X, L1 and L2 remain unchanged. The set of provable sequents how-
ever is extended by the least fixpoint of a function ML (A′ = A ∪ µ(ML)).
The set of improvable sequents is extended by the greatest fixpoint of a
function WL (E′ = E ∪ ν(WL)). Finally, those sequents that are known to
be either provable or not provable are removed from the set of undecided

sequents (U ′ = U \ (A′ ∪ E′)).

The functions which are used for the fixpoint computations are defined as
follows:

ML(X) = {Γ ∈ U | ∃(Γ,Σ) ∈ L1.∀(Σ,Γ ′) ∈ L2.Γ
′ ∈ X ∪A}

WL(X) = {Γ ∈ U | ∀(Γ,Σ) ∈ L1.∃(Σ,Γ ′) ∈ L2.Γ
′ ∈ X ∪ E}

Given a graph g, we denote the graph obtained by propagating in g by
prp(g). If g′ = prp(g), we also write g →P g

′.

3.2 The Algorithm

In order to show the provability of a formula φ, we start off with the sequent
Γ0 = {φ}:

Algorithm: (Show provability of Γ0)
1. Initialize: A0 = E0 = ∅, U0 = {Γ0}, X0 = S(Γ0),
g = (A0, E0, U0, X0Rules(Γ0), Selections(Γ0)).

2. If X = ∅, return the current graph as result.

3. Otherwise select any sequent Σ from X. Compute g′ = exp(g, Γ) s.t. g
Γ→E g′.

(Optionally: Compute g′′ = prp(g′) s.t. g′ →P g
′′;

If Γ0 ∈ A′′ ∪ E′′, break and return the current graph as result.)
4. Set the current graph to g′ (or g′′ if a propagation step took place).

Continue with 2.

After the loop has finished, propagate one final time and then let A (E)
denote the set of provable (improvable) sequents of the resulting graph.
If Γ0 ∈ A, return True, if Γ0 ∈ E, return False, otherwise return Undecided.

Fig. 5. The global caching algorithm

In [2], this algorithm has been shown to be

a) sound and complete w.r.t. provability of formulas of the logic that is repre-
sented by the utilized set of rules R,

b) of complexity EXPTIME, if the underlaying ruleset allows for it.

4 Optimisations

Even though the complexity of deciding provability (satisfiability) of modal for-
mulas using the above algorithm is exponential, it is still possible to achieve
reasonable performance by making use of several optimisation techniques, such
as described for specific logics in [4]. Since the above algorithm makes use of

global caching in order to recognize circular proof requirements, it is already
optimized in so far as that the provability (improvability) of any sequent Γ has
to be shown only once during the course of a proof (as the status of this sequent
is stored and may be looked up upon future occurances of Γ). We continue by
describing further methods to modify the introduced algorithm such that even
complex formulas may be efficiently treated:

First of all, we assume all appearing formulas to be normalized to truth,
negation and generalized disjunction (where the collection of all disjuncts is
treated as a set in order to remove duplicates and ordering) as indicated by the
rules shown in Figure 6.

Syntactic construct Normalisation

⊥ ¬>
¬¬φ φ
φ ∧ ψ ¬(¬φ ∨ ¬ψ)
φ→ ψ ¬φ ∨ ψ
φ↔ ψ (φ→ ψ) ∧ (ψ → φ)
φ ∨ ψ ∪{φ, ψ}
∪{φ, (∪Γ)} ∪({φ} ∪ Γ)

Fig. 6. Normalisation rules

Furthermore, the input formula is assumed to already contain only the standard
modalities for each feature (e.g. �Kφ is assumed to be represented by ¬♦K¬φ).
As another convention, we assume that sequents are always being satured (i.e.
top-level disjunctions ∪S are replaced by just the set S).
As usual, there is a list of all appearing formulas and a sequent is encoded as a
string of bits, where the bit at position i indicates whether the sequent contains
the i-th element of the list of formulas or not.
Another improvement over the algorithm from [2] is based on the following
observation: If a sequent Γ has been shown to be provable, all sequents containing
Γ will be provable as well. Thus it is admissable to soften the requirement in
the functionals which are used to compute the fixpoints:

ML(X)′ = {Γ ∈ U | ∃(Γ,Σ) ∈ L1.∀(Σ,Γ ′) ∈ L2.∃Γ ′′ ⊆ Γ ′.Γ ′′ ∈ X ∪A}
WL(X)′ = {Γ ∈ U | ∀(Γ,Σ) ∈ L1.∃(Σ,Γ ′) ∈ L2.∃Γ ′′ ⊆ Γ ′.Γ ′′ ∈ X∪E}

4.1 Simplification

As a first basic optimisation, simplifaction makes use of specific (propositional or
modal) tautologies in order to deterministically rewrite any appearing formulas
in a proof. The application of simplification does not invoke any branching and
is thus a linear process.
A non-exhaustive list of some important simplification rules is shown in Figure 7.

Operator Propositional Tautology

∨ ∪{>, ...} → >
∪{¬>, φ1, . . . , φn} → ∪{φ1, . . . , φn}
∪{φ,¬φ, . . .} → >

∨∧ ∪{¬φ,¬(¬φ ∨ ¬ψ)} → ψ

�K �K> → >
(�Kφ ∧�Kψ → �K(φ ∧ ψ))

�KD �KD> → >
(�KDφ ∧�KDψ → �KD(φ ∧ ψ))
¬�KD⊥ → >

�a
HM �a

HM> → >
(�a

HMφ ∧�a
HMψ → �a

HM(φ ∧ ψ))

⇒CK (φ⇒CK >)→ >
⇒CKCEM (φ⇒CKCEM >)→ >

Fig. 7. Examplary tautologies used for simplification

4.2 Generalized Semantic Branching

The technique of semantic branching [4] allows to ensure that created sub-proofs
are strictly disjoint. This prevents duplicate proofs a formulas which might oth-
erwise appear in both sub-proofs.

Propositional Semantic Branching In the propositional case, there is just
one branching rule, the conjunction rule. A semantic version of this rule is shown
in Figure 8. The justification for replacing the standard conjunction rule by the
rule for semantic conjunction branching is simple:

Lemma 1. A sequent is provable by syntactic propositional branching iff it is
provable by semantic propositional branching.

Proof. This fact follows from the propositional tautology

(A ∧B)↔ (A ∧ (A→ B)).

Syntactic branching Semantic branching

Γ,A Γ,B

Γ,A ∧B
Γ,A Γ,¬A,B

Γ,A ∧B

Fig. 8. Syntactic vs. Semantic branching on conjunctions

Modal Semantic Branching The general principle that can be extracted from
propositional semantic branching is a follows:

A syntactic branching rule

Γ1 . . . Γi . . . Γn

Γ

may be (repeatedly) replaced by a ‘more semantic‘ branching rule

Γ1 . . . Γ ′i . . . Γn

Γ

where Γ ′i =
∧
t∈T Γt → Γi for some T ⊆ {1, . . . , n} \ {i}.

The justification for this generalized semantic branching is as simple as in
the propositional case:

Lemma 2. A sequent is provable by syntactic modal branching iff it is provable
by semantic modal branching.

Proof. This fact follows from the propositional tautology

(
∧
t∈T Γt ∧ Γi)↔ (

∧
t∈T Γt ∧ (

∧
t∈T Γt → Γi)).

Feature Semantic Branching

⇒CK

A0 ↔ . . .↔ An ¬(A0 ↔ . . .↔ An),¬B1, . . . ,¬Bn, B0

Γ,

n̂

i=1

(Ai ⇒CK Bi)→ (A0 ⇒CK B0)

⇒CKCEM

A0 ↔ . . .↔ An ¬(A0 ↔ . . .↔ An), B0, . . . , Bk,¬Bk+1,¬Bn

Γ,

n̂

i=k+1

(Ai ⇒CKCEM Bi)→
k_
j=0

(Aj ⇒CKCEM Bj)

Fig. 9. Specific semantic branching for examplary modal logics

4.3 Generalized Dependency Directed Backtracking

The technique of controlled backtracking (also known as dependency directed
backtracking [4]) is in fact a special instance of caching: When this optimisation
is employed, each sequent Γ depends on a set](Γ) of sequents (namely on those
sequents which introduced any formula φ ∈ Γ into the proof tree). Whenever a
sequent turns out to be provable, its provability depends on possibly several se-
quents. These sequents are called the respective dependency set of {>}, denoted
by]({>}) (these sequents are also known as the promotors of the successful
leaf).

We have yet to formally define dependency sets, but we will rely on the
following crucial fact:

Lemma 3. Given a dependency set]({>}) of a succesfull leaf, the first sequent
Γ s.t. Γ ∈]({>}), is provable.

Due to Lemma 3, it will not be necessary to treat any open sequents be-
tween the current successful node in the proof graph and the first node which is
contained in the according dependency set.

To achieve this, a set of current dependency sequents is used, and whenever
a sequent is provable, the current set of dependency sequents is defined as the
set of dependency sequents of {>}. Now all those open sequents which appear
during the following backtracking through the proof tree and which are created
by a sequent which is not in the current set of dependency states, may be directly
set to provable.

If however a node in the proof graph which is contained in the current set
of dependency states is reached, the current set of dependency states is set to ∅
and the proof may continue as usual.

Definition 1. Depending on the shape of a proof tree,](Γ) is defined as follows:

– If Γ is the root of the proof tree,](Γ) = Γ .
– If Γ is obtained from Γ ′ by means of normalisation, saturation or simplifi-

cation, then](Γ) :=](Γ ′).
– If Γ is the only sequent in the premise of a rule application of a non-

branching rule to Γ ′, then](Γ) :=](Γ ′)
– If Γ1, . . . , Γn are n sequents from the premise of the rule application of a

branching rule to Γ = Γ ′, Γ ′′, s.t. Γ1, . . . , Γn is constructed from Γ ′′, the
dependancy set of any formula φ ∈

⋃
i∈{1,...,n} Γi is defined as follows: if

∀i ∈ {1, . . . , n}.φ ∈ Γi, then]({φ}) :=](Γ ′′), else]({φ}) := Γ .
– Finally,](Γ1 ∪ Γ2) :=](Γ1) ∪](Γ2)

Feature Modal Rule Dependencies

�K

≡:Γ1z }| {^n

i=1
Ai → B

Γ,
^n

i=1
�KAi → �KB| {z }
≡:Γ ′

](Γ1) :=](Γ ′)

⇒CK

≡:Γ1z }| {
A0 ↔ . . .↔ An

≡:Γ2z }| {
¬B1, . . .¬Bn, B0

Γ,
^n

i=1
(Ai ⇒CK Bi)→ (A0 ⇒CK B0)| {z }

≡:Γ ′

](Γ1, Γ2) := Γ, Γ ′

Fig. 10. Propagation of dependencies over some examplary modal features

Inituitively, a single application of for instance the modal rule of K does not
choose any subformulas of its conclusionary sequent to generate new sequents

(this is already a consequence of the fact that this rule does not branch). Hence
any introduced formulas will depend on those formulas on which the conclusion-
ary sequent already depended. On the other hand, the modal rule of for instance
CK selects some subformulas (the antecedents) from its conclusionary sequent
to be in the first sequent of the premise and others (the consequents) to be in
the second sequent of the premise, thus a choice is made and the introduced
formulas will directly depend on the conclusionary sequent.

The following Lemmas establish that dependency directed backtracking as
defined above is a sound optimisation technique for any coalgebraic model logic:

Lemma 4. Assume an application of any (possibly branching) rule:

Γ1 . . . Γn

Γ

Assume a sequent Γ ′ such that Γ /∈](Γ ′), but Γ ′ ⊆ Γi for any 0 < i ≤ n. Then
provability of Γ ′ implies the provability of all sequents Γi of the premise of the
rule.

Proof. Let Γ ′ be provable. Since Γ /∈](Γ ′), we have a non-selecting rule ap-
plication (w.r.t. Γ ′). For non-branching rules, the implication is trivial. For a
branching rule, it follows directly from the definition of]() and the fact that one
Γj contains Γ ′, that all Γj contain Γ ′. Hence all the sequents in the premise of
the rule are provable.

Lemma 5. Let the following be a (not yet fully explored) proof tree for Γ (where
Γ ij denotes the sequent number j on level i; in case that j > 1 and i > 1, Γ ij is
assumed to be an open sequent):

X

Γn1
. . .

Γ 2
1

. . . Γ 2
i

Γ 1
1

. . . Γ 1
j

Γ

Further, let]({>}) denote the dependency set of the successful leaf. If for all
Γ i1 with 0 < i ≤ n,]({>}) 6⊆ Γ i1, and if]({>}) ⊆ Γ (i.e. Γ is the first sequent
contained in the dependency set of the successful leaf), then Γ 1

1 is provable (since
any Γ ij with i > 1 is provable).

Proof. Lemma 4 ensures, that the provability of the successful leaf propagates to
all the open sequents Γ ij for i, j > 1 (since]({>}) 6⊆ Γ i−1

j). Thus we are not
able to find any sequent of level > 1 that is not provable.

To summarize, once we found a successful leaf Γn1 , it is not necessary to treat
the whole sub-proof which is induced by Γ 1

1 , since Γ 1
1 is always provable in the

above situation.

4.4 Proof Formulas and efficient propagation

Due to the inherent inefficiency of computing the propagation of provable se-
quents A (improvable sequents E) through the proof graph (all undecided se-
quents have to be traversed in order to compute the necessary fix-points), we
devise the following more efficient method:

Definition 2. A position p ∈ Pos = {c1 . . . cn | c1, . . . , cn ∈ N} ∪ {[]} is a finite
list of natural numbers.

A proof formula is defined as follows (for j, p ∈ Pos):

PF 3 ψ1, . . . , ψn := aj | ∧{ψ1, . . . , ψn} | ∨{ψ1, . . . , ψn} | lp

The subformula φ|p of a proof formula φ at position p = c1 . . . cn is defined
recursively. If n = 0, then φ|p = φ. If n = 1 (i.e. p = c1), then p2 = [], otherwise
(i.e. n > 1, p = c1c2 . . . cn), p2 = c2 . . . cn.

– If n > 0, aj |p and li|p are undefined.
– Let φ = ∧{ψ1, . . . , ψn} or φ = ∨{ψ1, . . . , ψn}. If 0 < c1 ≤ n, φ|p = ψc1 |p2 ; if
c1 > n, φ|p is undefined.

The partial indexing function L M : Seq + Prem → Pos maps sequents Γ ∈
Seq or premises Σ ∈ Prem from the defined subset of its domain to a position.

We also introduce sets of provable positions Ap ⊆ Pos and non-provable
positions Ep ⊆ Pos as well as the set tcs of positions that have been expanded
since the last propagation step and that are relevant to the propagation.

When constructing the proof graph g for a formula φ, we build up a proof
formula pf(g) in parallel, beginning with pf(g0) = aL{φ}M, L M undefined except
for L{φ}M = [] and Ap = Ep = tcs = ∅.
Expanding the proof formula: Say we expand sequent Γ , s.t. g Γ→E g′ for
g′ = exp(g, Γ) = (A′, E′, U ′, X ′, L′1, L

′
2). This means that there are n premises

to Γ (i.e. |AP (Γ)| = n) and for each Σi ∈ AP (Γ), (Γ,Σi) ∈ L′1. Also, for each
Σi ∈ AP (Γ), there is an mi s.t. |{Γj | (Σi, Γj) ∈ AS(Γ)}| = mi and each
such (Σ,Γj) is contained in L′2. In other words, Γ has n premises, each premise
consists of mi sequents and the according transitions are stored in L′1 and L′2.

The according changes to the proof formula and the indexing function are as
follows:
First we expand the sequent Γ :

– Replace aLΓ M with ∨{b1, . . . , bn}.
– For 0 < i ≤ n, if LΣiM is defined (i.e. the premise was encountered before),

replace bi by lLΣiM. If LΣiM ∈ Ap ∪ Ep, add LΓ M to tcs.
– For each remaining bi (i.e. for each new premise), set LΣiM = LΓ Mi.
– Optional: If n = 1, then ∨{b1} = b1 and LΣ1M = LΓ M.
– If n = 0, then add LΓ M to tcs.

Then we expand all the premises Σi:

– Replace any bi with ∧{a1, . . . , ami
}.

– For 0 < j ≤ mi, if LΓjM is defined (i.e. the sequent was encountered before),
replace aj by lLΓjM. If LΓjM ∈ Ap ∪ Ep, add LΣiM to tcs.

– For each remaining aj (i.e. for each new sequent), set LΓjM = LΣiMj.
– Optional: If mi = 1, then ∧{a1} = a1 and LΓ1M = LΣiM.
– If mi = 0, then add LΣiM to tcs.
– Replace any aj with aLΓjM.

Propagation in the proof formula: Propagation of A (E) through the proof
formula is realized by iterative approximation of the fixpoints. Any of the rules
from Figure 11 is applied repeatedly for each pj ∈ tcs until no rule may be
applied for this specific pj any more, pj is removed from tcs afterwards.

Condition(s) Changes to Ap (Ep) Changes to tcs

φ|pj = ∧∅ add pj

φ|pj = ∨∅ (add pj)

∃q ∈ Pos.φ|q = lpj , pj ∈ Ap add q add q

∃q ∈ Pos.φ|q = lpj , pj ∈ Ep (add q) add q

φ|p = ∧{ψ1, . . . , ψn}, ∀i ∈ {1 . . . n}.pi ∈ Ap add p add p

φ|p = ∨{ψ1, . . . , ψn}, ∃i ∈ {1 . . . n}.pi ∈ Ap add p add p

φ|p = ∧{ψ1, . . . , ψn}, ∃i ∈ {1 . . . n}.pi ∈ Ep (add p) add p

φ|p = ∨{ψ1, . . . , ψn}, ∀i ∈ {1 . . . n}.pi ∈ Ep (add p) add p

Fig. 11. The simplification rules for propagation in proof formulas

Propagation adds the positions of all newly added empty conjunctions (and
disjunctions) to Ap (Ep) and propagates them through the formula. The set tcs
is empty after each completed propagation step.

The set of all atoms aj that appear in pf(g) is the relevant subset of the set
X of unexpanded sequents of the proof graph.

Lemma 6. {Γ ∈ Seq | LΓ M ∈ Ap} = A.

Proof. The constructed proof formula is a direct representation of the proof
graph. Repeated application of the rules from Figure 11 iteratively approximates
the collection of fixpoints A and stores the according positions in Ap.

It follows that φ is provable iff [] ∈ Ap and that φ is not provable otherwise.
The improved efficiency of the process of propagating in the proof formula turns
propagation after each expansion step into a feasible option.

5 Conclusion

We have applied the well known optimisation techniques of semantic branching
and dependency directed backtracking to coalgebraic logics and we have shown

that the techniques generalize to all coalgebraic modal logics in a natural way.
This is especially interesting in the case of those modal logics whose modal rule
introduces additional branching (in contrast to more classic modal logics which
only branch on conjunctions).

As a second contribution, we have established a minimal representation of the
structure of satisfiability proofs of coalgebraic modal logics; this is achieved by
introducing and justifying the usage of proof formulas as a representation of the
proof graph. Hence basic propagation becomes a mere process of simplification
of the respective proof formula starting at the successful or unsucessful leaves
and only traversing the needed parts of the proof structure.

The presented algorithm and the proposed optimisations have been success-
fully implemented as a part of the experimental prover CoLoSS. Additionally,
the following optimization techniques have been implemented:

– restriction to maximal application of modal rules (when admissable),
– irrelevance check for subformulas of polarity preserving modal logics,
– heuristics (such as “most-appearing-first” or “oldest-first”).

The implementation shows reasonable performance especially for logics for
which few optimisations apart from those presented here exist. However, detailled
and relevant benchmarking of the examplary implementation in CoLoSS is a
complex task (due to the amount and nature of different logics and optimisation
techniques which are involved) and subject to ongoing research.

References

1. G. Calin, R. Myers, D. Pattinson, and L. Schröder. Coloss: The coalgebraic logic
satisfiability solver (system description). In Methods for Modalities, M4M-5, vol.
231 of ENTCS, pp. 41–54. Elsevier, 2009.

2. R. Goré, C. Kupke, and D. Pattinson. Optimal tableau algorithms for coalgebraic
logics. In R. Majumdar and J. Esparza, eds., Proc. TACAS 2010, Lecture Notes in
Comp. Sci., 2010.

3. D. Hausmann and L. Schröder. Optimizing conditional logic reasoning within coloss
(system description). In Methods for Modalities, M4M-6, vol. 262 of ENTCS, pp.
157–171. Elsevier, 2010.

4. I. Horrocks and P. Patel-Schneider. Optimizing description logic subsumption. Jour-
nal of Logic and Computation, 9(3):267–293, 1999.

5. D. Pattinson and L. Schröder. Admissibility of cut in coalgebraic logics. In Coal-
gebraic Methods in Computer Science, CMCS 08, vol. 203 of ENTCS, pp. 221–241.
Elsevier, 2008.

6. L. Schröder and D. Pattinson. Pspace bounds for rank-1 modal logics. ACM Trans.
Comput. Logic, 10(2:13):1–33, 2009.

