
Optimizing Coalgebraic Modal Logic Reasoning

Daniel Hausmann?

Department of Computer Science, Universität Bremen
hausmann@informatik.uni-bremen.de

Abstract. The framework provided by coalgebraic modal logics offers
broadly applicable coalgebraic semantics and an ensuing general treat-
ment of modal sequent and tableau calculi while covering a wide variety
of logics ranging from graded and probabilistic modal logic to coali-
tion logic and conditional logics. Here we discuss generic optimisation
strategies that may be employed to improve the performance of global
caching algorithms that decide the satisfiability of coalgebraic modal
logics. Specifically, we discuss and show the admissability of generalisa-
tions of such established strategies as propositional and modal simplifica-
tion, dependency directed backtracking, semantic branching and complex
heuristics for coalgebraic modal logics. As a more advanced considera-
tion, the flattened representation of the involved proof graph by a proof
formula is shown to be sound and complete; this separation of proof
structure from the actual content of the proof does not only enhance the
performance of the propagation process, it also allows for further optimi-
sation techniques such as proof graph simplification to be applied. The
relevance of the theoretic results is exhibited by detailled benchmark-
ing of the examplary implementation, the Coalgebraic Logic Satisfiability
Solver (CoLoSS), against established testsets of formulas.

1 Introduction

. . .

2 Coalgebraic Sequent Calculus

2.1 Notation

Given an endofunctor on sets T , a T -coalgebra C consists of a carrier-set C and
a function γ : C → T (C).

The semantics of modal operators ♥ ∈ Λ is then defined by means of predicate
liftings [[♥]] : 2n → 2 ◦ T op where 2 : Set → Setop denotes the contravariant
powerset functor.

Formulas are of the shape

? Work forms part of DFG-project Generic Algorithms and Complexity Bounds in
Coalgebraic Modal Logic (SCHR 1118/5-1)

F(Λ) 3 A1, . . . , An := p | ¬A1 | A1 ∧A2 | A1 ∨A2 | ♥(A1, . . . , An)

where ♥ ∈ Λ is an n-ary modal operator.
The semantics with respect to a model coalgebra M = (C, γ, π) (where π

denotes a valuation of propositional atoms) is fixed as follows:

[[♥(A1, . . . , An)]]M = γ−1 ◦ [[♥]]C([[A1]]M , . . . , [[An]]M)

A (Λ-)sequent Γ is a set of formulas (from F(Λ)).
A sequent rule consists of its premise Σ (a set of sequents) and its conclusion

Γ (one sequent). A rule R = (Σ = {Γ1, . . . , Γn}, Γ) is usually presented as
follows:

Γ1 . . . Γn

Γ

A rule application of rule R to sequent Γ is an instantiation of R s.t. the
conclusion of the rule is equal to Γ .

A formula φ is provable if there is a model coalgebra M = (C, γ, π) with a
state x ∈ C s.t. [[φ]] 3 x. A sequent Γ = {φ1, . . . , φn} is provable iff

∨n
i=1 φi is

provable. A premise is said to be provable iff all its sequents are provable.

2.2 A generic sequent calculus for coalgebraic modal logics

A sound and complete sequent calculus (w.r.t. the according coalgebraic logic)
is obtained if the propositional rules from Figures 1 and 2 are utilized together
with the appropriate modal rule(s). Some examplary modal rules for different
coalgebraic modal logics are depicted in Figure 3 while the modal rules of some
conditional logics are introduced in Figure 4.

(T)
Γ,>

(At)
Γ, p,¬p

(¬∨)
Γ,A Γ,B

Γ,¬(¬A ∨ ¬B)

Fig. 1. Branching or finishing propositional sequent rules

(¬¬)
Γ,A

Γ,¬¬A
(∨)

Γ,A,B

Γ, (A ∨B)

Fig. 2. Linear propositional sequent rules

Take note that the rules from Figure 2 may be integrated into the normali-
sation process (see 3.1) due to their linearity.

Modal Logic (Feature) Modal Rule(s)

M (�M)
A→ B

Γ,�MA→ �MB

K (�K)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�KAi → �KB

KD (�KD)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�KDAi → �KDB

¬
n̂

i=1

Ai

Γ,¬
n̂

i=1

�KDAi

Hennessy-Milner-Logic (�aHM)

n̂

i=1

Ai → B

Γ,

n̂

i=1

�aHMAi → �aHMB

Coalition Logic (�CC)

n̂

i=1

Ai → B ∨
m_
j=1

Cj

Γ,

n̂

i=1

�Ci
C Ai → �DCB ∨

m_
j=1

�NCCj

m,n ≥ 0,
Ci pairwise disjoint subsets of D.

Graded Modal Logic (♦iG)

nX
i=1

Ai ≤
mX
j=1

Bj

Γ,

n̂

i=1

♦ki
GAi →

m_
j=1

♦
lj
GBj

n,m ≥ 0,Pn
i=1(ki + 1) ≥ 1 +

Pm
j=1 lj .

Probabilistic Modal Logic (♦pP)

nX
i=1

Ai + u ≤
mX
j=1

Bj

Γ,

n̂

i=1

♦pi
PAi →

m_
j=1

♦
qj

PBj

m,n ≥ 0, m+ n ≥ 1, u ∈ Z,Pn
i=1 pi + u ≥

Pm
j=1 qj and

m = 0→
Pn
i=1 pi + u > 0.

Fig. 3. One-step complete, resolution closed modal rules for some coalgebraic modal
logics

We introduce the following abbreviations in order to allow for a swift pre-
sentation of the modal rules of propositional and graded modal logic: Given a
formula φi and ri ∈ Z for all i ∈ I as well as k ∈ Z,

∑
i∈I

riφi ≥ k ≡
∧

J⊆I,r(J)<k

(
∧
j∈J

φj →
∨
j /∈J

φj),

where r(J) =
∑
j∈J rj . Furthermore, we use

∑
ai ≤

∑
bj as an abbreviation for∑

bj −
∑
ai ≥ 0.

Modal Logic (Feature) Modal Rule(s)

CK (⇒CK)
A0 ↔ . . .↔ An ¬B1, . . . ,¬Bn, B0

Γ,

n̂

i=1

(Ai ⇒CK Bi)→ (A0 ⇒CK B0)

CK+CEM (⇒CKCEM)
A0 ↔ . . .↔ An B0, . . . , Bk,¬Bk+1, . . .¬Bn

Γ,

n̂

i=k+1

(Ai ⇒CKCEM Bi)→
k_
j=0

(Aj ⇒CKCEM Bj)

CK+CM (⇒CKCM)

Ai = Aj for i, j ∈ l(v), v ∈ G initialS
i∈l(v){¬Bi,¬Ai}, Aj for v ∈ G and j ∈ l(w)

for some successor w of v
{¬Bi | i ∈ I}, DS
i∈I{¬Bi,¬Ai}, C
¬C,Ai for i ∈ I

Γ,
^
i∈I

(Ai ⇒CKCM Bi)→ (C ⇒CKCM D)

for an I-compatibility graph G

System S (⇒SysS)
∆M (ν(M)) for each M ∈ SΓ0

Γ,
^
i∈I

(Ai ⇒SysS Bi)→ (A0 ⇒SysS B0)| {z }
≡:Γ0

where SΓ0 denotes all S-structures (S,�) over Γ0,
∆M ([i]) ≡

S
k'i{¬Ak,¬Bk}, {Aj | i ≺ j ∨ j /∈ S},

∆M ([0]) ≡ ¬A0,
S

0 6=k'0{¬Ak,¬Bk}, B0, {Aj | j /∈ S}.

Fig. 4. One-step complete, resolution closed modal rules for some conditional coalge-
braic logics

Given a sequent Γ , a proof tree t = (s, p, r1, r2, x) is a two-kinded tree with
sequents s and premises p as nodes and a set x of unexpanded sequents. The
relation r1 : s → P(p) assigns to each sequent the set of its successor premises,
whereas the relation r2 : p → P(s) returns for each premise the set of sequents
out of which it consists. A proof tree has its root at the sequent node Γ .

For all expanded sequents Γ /∈ x, r1(Γ) = {Σ |
(Σ,Γ) is an instance of a rule R}. For all premises Σ, r2(Σ) = {Γ | Σ ∈ Γ}.

Unexpanded sequents Γ ∈ x (i.e. sequents to which no rule has been applied
yet), are called open sequents. A proof tree with x = ∅ is called fully expanded.

Any sequent to which either the rule (T) or the rule (At) may be applied is
called a successful leaf of the proof tree.

Any sequent to which no rule may be applied is called an unsuccessful leaf.
A proof tree with root Γ is successful if

1. it is a successful leaf, or
2. there is any Σ ∈ r1(Γ), s.t. all Γ ′ ∈ r2(Σ) have a successful proof tree.

For the sake of readability, we will usually show simplified proof trees where
only one rule application is considered for each sequent (such that only one –
the interesting one – of the possible premises of each sequent is shown).

It was shown in Schröder, Pattinson, 2008, that this generic sequent calculus
enables the construction of a PSPACE decision procedure for the provability of
the according coalgebraic logic – as long as the used modal rules are one-step
complete and resolution closed as well as... [ask Lutz for name of property]

3 Optimisations

An optimisation technique for provability proofs of coalgebraic modal formulas
is a coalgebra homomorphism, mapping states of a witness coalgebra to states of
an optimized witness coalgebra (given a formula φ, coalgebra (A,α) is a witness
of φ, whenever there is a state a ∈ A s.t. φ ∈ a). In general, the idea is to map
bigger coalgebras to smaller coalgebras, thusly reducing the amount of necessary
proof work.

In general, we are interested in finding as small as possible proofs for a
given formula. Simplification by tautologies allows us to cut of short successful
branches or to shorten long successful branches in the proof tree (without the
need to completely explore them). Semantic branching allows to ensure that two
or more sub-proofs (which are induced by a conjunction or a modal operator) are
strictly disjoint in order to avoid repeated treatment of a sepcific formula. The
technique of controlled backtracking allows us to cut of all branches in the proof
tree which contain formulas that have already been shown to lead to success.
Heuristics try to choose the shortest path through the proof tree that leads to
success. Finally, the use of caching techniques turns (parts of) the proof tree
into a proof graph, thusly eliminating the need for duplicate proofs while paying
the price of possibly exponential storage needs.

The most important expectation with regards to any optimisation is of course
that it must respect the soundness and completeness of the algorithm. Further-
more any optimisation involves some computations and might hence sometimes
decrease the efficiency of the underlaying algorithm. Thus another important
property of optimisations is, that its gain should ‘usually‘ be larger than the
invested effort.

We describe the optimisation techniques (all of which being adoptations or
generalisations of the techniques from Horrocks,Patel-Schneider, except the re-
striction to maximal applications of modal rules - Horrocks,Patel-Schneider con-
sidered only logics for which this restriction is admissable) in more detail:

3.1 Normalisation

First of all, we fix the syntactic form in which we assume all formulas to be.
This is achieved by the process of normalisation of formulas which is in fact
not an optimisation by itself, but rather a necessary condition for the usage of
optimisations such as simplification by tautologies.

Syntactic construct Normalisation

⊥ ¬>
¬¬φ φ
φ ∧ ψ ¬(¬φ ∨ ¬ψ)
φ→ ψ ¬φ ∨ ψ
φ↔ ψ (φ→ ψ) ∧ (ψ → φ)
φ ∨ ψ ∪{φ, ψ}
∪{φ, (∪Γ)} ∪({φ} ∪ Γ)

Fig. 5. Normalisation rules

The input formula is assumed to already contain only the standard modalities
for each feature. Thus we normalize to truth, negation and generalized disjunc-
tion (where the collection of all disjuncts is treated as a set in order to remove
duplicates and ordering).

3.2 Simplification by Tautologies

Optimisation by simplifaction rules makes use of specific (propositional or
modal) tautologies in order to deterministically rewrite any appearing formu-
las in a proof. The application of simplification does not invoke any branching
and is thus a linear process.

However, only tautologies with very few (and hence quickly checked for)
assumptions should be used for simplification. Checking the assumptions of tau-
tologies may involve the checking of syntactical equivalence of formulas. This
task may be optimized by computing unique hashes for formulas and by then
only checking for equality of the hash-values.

It is possible to distinguish two kinds of rules for the optimisation by simplifi-
cation: Generic propositional rules which are the same for any coalgebraic modal
logic and more specific modal simplification rules which may differ between any
two concrete modal logics:

Propositional Simplification The following is a non-exhaustive set of prosi-
tional simplification rules on sequents:

The last propositional tautology represents boolean constraint propagation
(BCP).

Operator Propositional Tautology

∨ ∪{>, ...} → >
∪{¬>, φ1, . . . , φn} → ∪{φ1, . . . , φn}
∪{φ,¬φ, . . .} → >

∨∧ ∪{¬φ,¬(¬φ ∨ ¬ψ)} → ψ

Fig. 6. Propositional tautologies used for simplification

Modal Simplification A modal feature may or may not allow for reasonable
simplification:

Feature Modal Tautology

�M �M> → >
�K �K> → >

(�Kφ ∧�Kψ → �K(φ ∧ ψ))

�KD �KD> → >
(�KDφ ∧�KDψ → �KD(φ ∧ ψ))
¬�KD⊥ → >

�aHM �aHM> → >
(�aHMφ ∧�aHMψ → �aHM(φ ∧ ψ))

�CC �CC> → >
♦iG
♦pP
⇒CK (φ⇒CK >)→ >
⇒CKCEM (φ⇒CKCEM >)→ >
⇒CKCM (φ⇒CKCM >)→ >

((> ⇒CKCM ⊥)→ (φ⇒CKCM ψ))→ >
((> ⇒CKCM φ)→ (> ⇒CKCM >))→ >
((φ⇒CKCM ⊥)→ (⊥ ⇒CKCM ψ))→ >
((⊥ ⇒CKCM φ)→ (⊥ ⇒CKCM φ))→ >

⇒SysS

Fig. 7. Modal tautologies for simplification

3.3 Semantic Branching

The technique of semantic branching allows us to make sure that created sub-
proofs are strictly disjoint. This prevents duplicate proofs a formulas which might
otherwise appear in both sub-proofs. This technique may however enlarge the
proof tree.

Propositional Semantic Branching In the propositional case, there is just
one branching rule, the conjunction rule. A semantic version of this rule is shown

in Figure 8. The justification for replacing the standard conjunction rule by the
rule for semantic conjunction branching is simple:

Lemma 1. A sequent is provable by syntactic propositional branching iff it is
provable by semantic propositional branching.

Proof. This fact follows from the propositional tautology

(A ∧B)↔ (A ∧ (A→ B)).

Syntactic branching Semantic branching

Γ,A Γ,B

Γ,A ∧B
Γ,A Γ,¬A,B

Γ,A ∧B

Fig. 8. Syntactic vs. Semantic branching on conjunctions

Example 1. Consider the sequent Γ = {A ∧ B,C ∧ A} and let A be provable,
but let A induce a lengthy proof tree. The use of syntactic branching leads to
the following redundant proof tree:

X

. . .

A

X

. . .

A, C

A,A ∧ C

X

. . .

B,A

. . .

B,C

B,A ∧ C
A ∧B,A ∧ C

Semantic branching on the other hand may lead to a much smaller proof tree
(since A has to be shown only once):

X

. . .

A

X

A,¬A,C
A,A ∧ C

X

¬A,B,A
. . .

¬A,B,C
¬A,B,A ∧ C

A ∧B,A ∧ C

Modal Semantic Branching The general principle that can be extracted from
propositional semantic branching is a follows:

A syntactic branching rule

Γ1 . . . Γi . . . Γn

Γ

may be (repeatedly) replaced by a ‘more semantic‘ branching rule

Γ1 . . . Γ ′i . . . Γn

Γ

where Γ ′i =
∧
t∈T Γt → Γi for some T ⊆ {1, . . . , n} \ {i}.

The justification for this generalized semantic branching is as simple as in
the propositional case:

Lemma 2. A sequent is provable by syntactic modal branching iff it is provable
by semantic modal branching.

Proof. This fact follows from the propositional tautology

(
∧
t∈T Γt ∧ Γi)↔ (

∧
t∈T Γt ∧ (

∧
t∈T Γt → Γi)).

Feature Semantic Branching

�iG
.

⇒CK

A0 ↔ . . .↔ An ¬(A0 ↔ . . .↔ An),¬B1, . . . ,¬Bn, B0

Γ,

n̂

i=1

(Ai ⇒CK Bi)→ (A0 ⇒CK B0)

Fig. 9. Specific semantic branching for examplary modal logics

3.4 Controlled Backtracking

The technique of controlled backtracking (also known as dependency directed
backtracking) is in fact a special instance of caching. When this optimisation is
employed, each sequent Γ depends on a set](Γ) of sequents (namely on those
sequents which introduced any formula φ ∈ Γ into the proof tree). Whenever a
sequent turns out to be provable, its provability depends on possibly several se-
quents. These sequents are called the respective dependency set of {>}, denoted
by]({>}) (these sequents are also known as the promotors of the successful
leaf).

We have yet to formally define dependency sets, but we will rely on the
following crucial fact:

Lemma 3. Given a dependency set]({>}) of a succesfull leaf, any sequent Γ
s.t. Γ ∈]({>}), is provable.

Due to Lemma 3, it will not be necessary to treat any open sequents be-
tween the current successful node in the proof graph and the first node which is
contained in the according dependency set.

To achieve this, a set of current dependency sequents is used, and whenever
a sequent is provable, the current set of dependency sequents is defined as the
set of dependency sequents of {>}. Now all those open sequents which appear
during the following backtracking through the proof tree and which are created
by a sequent which is not in the current set of dependency states, may be directly
set to provable.

If however a node in the proof graph which is contained in the current set
of dependency states is reached, the current set of dependency states is set to ∅
and the proof may continue as usual.

Definition 1. Depending on the shape of a proof tree,](Γ) is defined as follows:

– If Γ is the root of the proof tree,](Γ) = Γ .
– If Γ is obtained from Γ ′ by means of normalisation or simplification, then
](Γ) :=](Γ ′).

– If Γ is the only sequent in the premise of a rule application of a non-
branching rule to Γ ′, then](Γ) :=](Γ ′)

– If Γ1, . . . , Γn are n sequents from the premise of the rule application of a
branching rule to Γ ′, the dependancy set of any formula φ ∈

⋃
i∈{1,...,n} Γi

is defined as follows: if ∀i ∈ {1, . . . , n}.φ ∈ Γi, then]({φ}) :=](Γ), else
]({φ}) := Γ .

– Finally,](Γ1 ∪ Γ2) :=](Γ1) ∪](Γ2)

Feature Modal Rule Dependencies

�K

≡:Γ1z }| {^n

i=1
Ai → B

Γ,
^n

i=1
�KAi → �KB| {z }
≡:Γ ′

](Γ1) :=](Γ ′)

⇒CK

≡:Γ1z }| {
A0 ↔ . . .↔ An

≡:Γ2z }| {
¬B1, . . .¬Bn, B0

Γ,
^n

i=1
(Ai ⇒CK Bi)→ (A0 ⇒CK B0)| {z }

≡:Γ ′

](Γ1, Γ2) := Γ ′

Fig. 10. Propagation of dependencies over some examplary modal features

Inituitively, a single application of for instance the modal rule of K does not
choose any subformulas of its conclusionary sequent to generate new sequents
(this is already a consequence of the fact that this rule does not branch). Hence

any introduced formulas will depend on those formulas on which the conclusion-
ary sequent already depended. On the other hand, the modal rule of CK selects
some subformulas (the antecedents) from its conclusionary sequent to be in the
first sequent of the premise and others (the consequents) to be in the second
sequent of the premise, thus a choice is made and the introduced formulas will
directly depend on the conclusionary sequent.

The following Lemmas establish that dependency directed backtracking as
defined above is a sound optimisation technique for any coalgebraic model logic:

Lemma 4. Assume an application of any (possibly branching) rule:

Γ1 . . . Γn

Γ

Assume a sequent Γ ′ such that Γ /∈](Γ ′), but Γ ′ ∈ Γi for any 0 < i ≤ n. Then
provability of Γ ′ implies the provability of all sequents of the premise of the rule.

Proof. Let Γ ′ be provable. Since Γ /∈](Γ ′), we have a non-selecting rule ap-
plication (w.r.t. Γ ′). For non-branching rules, the implication is trivial. For a
branching rule, it follows directly from the definition of]() and the fact that one
Γj contains Γ ′, that all Γj contain Γ ′. Hence all the sequents in the premise of
the rule are provable.

Lemma 5. Let the following be a (not yet fully explored) proof tree for Γ (where
Γ ij denotes the sequent number j on level i; in case that j > 1 and i > 1, Γ ij is
assumed to be an open sequent):

X

Γn1
. . .

Γ 2
1

. . . Γ 2
i

Γ 1
1

. . . Γ 1
j

Γ

Further, let]({>}) denote the dependency set of the successful leaf. If for all
Γ i1 with 0 < i ≤ n,]({>}) 6⊆ Γ i1, and if]({>}) ⊆ Γ (i.e. Γ is the first sequent
contained in the dependency set of the successful leaf), then Γ 1

1 is provable (since
any Γ ij with i > 1 is provable).

Proof. Lemma 4 ensures, that the provability of the successful leaf propagates to
all the open sequents Γ ij for i, j > 1 (since]({>}) 6⊆ Γ i−1

j). Thus we are not
able to find any sequent of level > 1 that is not provable.

To summarize, once we found a successful leaf, it is not necessary to treat
the whole sub-proof which is induced by Γ 1

1 , since Γ 1
1 is always provable in the

above situation.

3.5 Maximal Application of Modal Rules

A single modal sequent rule representation usually describes in fact a set of
modal rules, each of the rules treating a different combination of positive and/or
negative literals of the respective feature. Given a sequent Γ to match, any
such modal rule could be applied to Γ , as long as the conclusion of the rule is
equal to Γ . It may be observed however that it often suffices to consider maximal
applications of the modal rules. An application (Γ1, Γ

′
1) of a modal rule to Γ1 ⊆ Γ

is maximal if there is no formula φ in Γ \Γ1 s.t. the conclusion of any the modal
rule would still be of shape Γ1 ∪ {φ}.

Given a set of modal rules RM , the restriction to maximal applications of
rules from RM is admissable whenever the provability of the premise of any
non-maximal application of a rule from RM implies that there is a maximal
application of a rule RM with a provable premise.

Such a restriction is admissable (and in fact highly recommended) for many
modal logics (see Table 11)

A negative example is the feature of CK (or similarly, the feature of CK-
CEM):

Example 2. Let us consider the examplary sequent Γ = {¬(A1 ⇒ B0),¬(A2 ⇒
B0), (A0 ⇒ B0)} and assume that A0 ↔ A1 but A1 = A2. The only maximal
application of the modal rule CK would lead to three new sequents:

X

A0 ↔ A1

A1 ↔ A2

X

¬B0, B0

¬(A1 ⇒ B0),¬(A2 ⇒ B0), (A0 ⇒ B0)

The second of these sequents is not provable by assumption, thus φ can not
be shown to be provable.

However, using a non-maximal application of the modal rule CK to the
subsequent Γ ′ = {¬(A1 ⇒ B0), (A0 ⇒ B0)} of Γ , the provability of φ may be
shown:

X

A0 ↔ A1

X

¬B0, B0

¬(A1 ⇒ B0),¬(A2 ⇒ B0), (A0 ⇒ B0)

Even though the restriction to maximal applications of the modal rule of
CK is not admissable, it is possible to obtain a nearly equivalent optimisation
of the proofs for CK by the use of intelligent modal heuristics (see 3.8).

3.6 Proof-tree Trimming

Due to the two-kinded nature of a proof tree and the alternating existential
and universal provability requirements between the two kinds of nodes, a proof

Modal Features Admissability

�K,�KD,�M,�aHM, �iG, �pP,⇒CKCM ,⇒SysS Yes

⇒CK,⇒CKCEM No

Fig. 11. Admissability of restriction to maximal application of modal rules

tree may be trimmed, once enough information about the provability of specific
sequents has been obtained.

If there are several possible premises for one sequent and the provability of
one of the premises has already been shown, the other premises for the same
sequent need not be explored any more. Similary, if there are several sequents
in a premise, as soon as one of the sequents turns out to be not provable the
whole premise is not provable any more and the other sequents of the premise
need not be explored.

In more detail, the following operations are valid trimmings of a proof tree:

1. Removal of non-provable premises,
2. Removal of all premises that are parallel to a provable premise (r1(Γ) =
{Σ1, . . . , Σi, . . . , Σn} and Σi provable r1(Γ) = {Σi}),

3. Removal of provable sequents,
4. Removal of all sequents that are parallel to a non-provable sequent (r2(Σ) =
{Γ1, . . . , Γi, . . . , Γn} and Γi non-provable r2(Σ) = {Γi}).

The resulting tree is no complete proof tree any more (since several branches
may have been cut of). However, the following fact establishes that trimming is
a sound optimisation technique:

Lemma 6. A sequent Γ has a successful proof tree iff it has a successful trimmed
proof tree.

Proof. The branches which are cut off do not interfere with the provability of Γ .
See 4.3 for more details.

3.7 Caching

Using the optimisation technique of caching, it is possible to store the satisfiabil-
ity status of subformulas that appear during the course of a proof. This prevents
us from treating the same subformula more than once, thus saving redundant
proof-work.

The cost of this optimisation technique is an increase in the use of memory
during the proof. Especially in the case of logics whose decision procedure is
in PSPACE, the use of caching may in theory negate the property of optimal
complexity of the used algorithm (bringing those logics in theory to EXPTIME).

Caching is a bit troublesome in combination with dependency directed back-
tracking since a formula may depend on several sequents if it appears at different
positions in the proof. However, it is sufficient to simply use the union of the
respective dependency sets whenever a formula appears at least twice.

3.8 Heuristics

A heuristic guides the search in the proof tree and chooses

1. a premise from the set of all open premises,
2. a meta-disjunction within this premise and
3. one sequent within the selected meta-disjunction.

To this end, the heuristic assigns a priority to each open premise, each open
meta disjunction and each open sequent.

The sequent with the highest overall priority will be the next to be explored.
A reasonable heuristic helps (if possible) in finding a shorter way to show

provability of a formula.

Propositional expansion first It is a reasonable tactic of expansion to first
completely treat all propositional formulas in a sequent before considering the
modal literals. This may be achieved by assigning high priority to those sequents,
meta-disjunctions and premises which are introduced by the conjunction rule.
Such sequents, meta-disjunctions and premises which are generated by an appli-
cation of a modal rule are given a low priority.

Classic Heuristics On top of this preference of propositional expansion, one
might add any other heuristic, such as for instance one of the following two
classic heuristics (or even a combination of both):

– most appearing first : Assign the highest priority to open sequents that ap-
pear in the highest number of formulas. The priority of meta-disjunctions is
defined to be the priority of the contained sequent. The priority of a premise
is the maximum of the priorities of the contained meta-disjunctions.

– oldest first : . . .

Modal Heuristics Here is a specific modal heuristic for CK (a similar heuristic
if suitable for CKCEM). Note, that this heuristic is only applicable if caching
is enabled:

Within any premise of a modal rule, the short sequents of the form A↔ B are
given the highest priority (in combination with caching, this leads to a complete
partition of modal antecedents into equivalence classes).

Once this is done, we give high priority (e.g. 1) to maximal (w.r.t the cached
equivalence classes) premises and priority of 0 to non-maximal premises (i.e.
we do not treat non-maximal premises at all). As long as not all significant
equivalences have yet been shown or refuted, the priority of a premise stays at
a normal value (e.g. 0.5).

In combination with caching (of logical equivalences), this heuristic imple-
ments the optimizations of CK and CKCEM proposed in Hausmann,Schröder
2009.

4 Global Caching Algorithm

This is an adoptation of the Algorithm from Pattinson et.al.
Key differences are

1. We treat provability of formulas here instead of satisfiability. However, a
formula is satisfiable whenever its negation is not provable.

2. The introduction of meta-disjunctions.
3. X is a structured set now. This allows heuristics to first choose a premise to

treat, then choose a meta-disjunction from this premise and finally choose a
sequent from the chosen meta-disjunction.

4. The propagation is optimized now. Instead of computing the fixpoints of all
the undecided sequents every time, classes of coherent sequents are stored.
The propagation checks only ’whether the new sequents decide any of the
classes’.

4.1 The proof graph and transitions

A sequent is a set of formulas. A meta-disjunction is a set of sequents. A premises
is a set of meta-disjunctions.

A graph is a tuple (A,E,U,X,L1, L2) where A,E,U ⊆ Seq are sets of se-
quents, X ⊆ Prems is a set of premises.

Given a sequent Γ , we define the set of all possible rule applications to Γ ,
AR(Γ) = {(Γ,Σ) ∈ R}, the set of all obtainable premises AP (Γ) = {Σ |
(Γ,Σ) ∈ AR(Γ)} and the set of all selections AS(Γ) = {(Σ,Γ ′) | Σ ∈ AP (Γ) ∧
Γ ′ ∈ Σ}.

We fix two effectively computable transitions between graphs:

– Expand: Given a sequent Γ that is contained in any meta-disjunction from
any premise in X, this transition leads from a graph g to the graph g′ that
is obtained from g by expanding Γ . To this end, X is extended by all the
premises from AR(Γ) and Γ is removed from X (X ′ = (X ∪ AP (Γ)) \ Γ).
Furthermore, L1 is extended by all possible rule applications for Γ (L′1 = L1∪
AR(Γ)). Finally, L2 is extended by all possible selections for rule applications
for Γ (L′2 = L2 ∪AS(Γ)).
In conclusion, this procedure applies all applicable rules to Γ , marks all
resulting premises as not yet expanded, marks Γ as expanded and stores the
implied transitions in L1 and L2.
For a fixed sequent Γ and a graph g, we denote the expansion of Γ in g by
exp(g, Γ). If g′ = exp(g, Γ), we also write g Γ→E g′.

– Propagate: This procedure evaluates the given graph as far as yet possible:
The sets X, L1 and L2 remain unchanged. The set of provable sequents how-
ever is extended by the least fixpoint of a function ML (A′ = A ∪ µ(ML)).
The set of not provable sequents is extended by the greatest fixpoint of a
function WL (E′ = E ∪ ν(WL)). Finally, those sequents that are known to
be either provable or not provable are removed from the set of undecided

sequents (U ′ = U \ (A′ ∪ E′)).

The functions which are used for the fixpoint computations are defined as
follows:

ML(X) = {Γ ∈ U | ∀(Γ,Σ) ∈ L1.∃(Σ, ε) ∈ L2.∀Γ ′ ∈ ε.Γ ′ ∈ X ∪A}
WL(X) = {Γ ∈ U | ∃(Γ,Σ) ∈ L1.∀(Σ, ε) ∈ L2.∃Γ ′ ∈ ε.Γ ′ ∈ X ∪ E}

Given a graph g, we denote the graph obtained by propagating in g by
prp(g). If g′ = prp(g), we also write g →P g

′.

4.2 The Algorithm

In order to show the provability of a formula φ, we start off with the sequent
Γ0 = {φ}:

Example 3. (Show provability of Γ0)

1. Set g = (A = {∅}, E = ∅, U = {Γ0}, X = AP (Γ0), L1 = AR(Γ0), L2 =
AS(Γ0)).

2. If X = ∅, return the current graph as result.
3. Otherwise select any premise Σ from X, select any meta-disjunction ε from
Σ and select any sequent Γ from ε. Compute g′ = exp(g, Γ) s.t. g Γ→E g′.
(Optionally: Compute g′′ = prp(g′) s.t. g′ →P g′′; If Γ0 ∈ A′′ ∪ E′′, break
and return the current graph as result.)

4. Set the current graph to g′ (or g′′ if a propagation step took place). Continue
with 2.

After the loop has finished, propagate one final time and then let A (E) be the
set of provable (not provable) sequents of the resulting graph. If Γ0 ∈ A, return
True, if Γ0 ∈ E, return False, otherwise return Undecided.

This algorithm has been shown to be

a) sound and complete w.r.t. provability of formulas in the logic that is repre-
sented by the utilized set of rules R,

b) of complexity EXPTIME, if the underlaying ruleset allows for it.

4.3 Improving the algorithm

Due to the inherent inefficiency of computing the propagation of A (E) through
the proof graph, we devise the following more efficient method:

Definition 2. A position p ∈ Pos = {c1 . . . cn | c1, . . . , cn ∈ N} ∪ {[]} is a finite
list of natural numbers.

A proof formula is defined as follows (for j, p ∈ Pos):

PF 3 ψ1, . . . , ψn := aj | ∧{ψ1, . . . , ψn} | ∨{ψ1, . . . , ψn} | lp

The subformula φ|p of a proof formula φ at position p = c1 . . . cn is defined
recursively. If n = 0, then φ|p = φ. If n = 1 (i.e. p = c1), then p2 = [], otherwise
(i.e. n > 1, p = c1c2 . . . cn), p2 = c2 . . . cn.

– If n > 0, aj |p and li|p are undefined.
– Let φ = ∧{ψ1, . . . , ψn} or φ = ∨{ψ1, . . . , ψn}. If 0 < c1 ≤ n, φ|p = ψc1 |p2 ; if
c1 > n, φ|p is undefined.

The partial indexing function L M : Seq + Prem → Pos maps sequents Γ ∈
Seq or premises Σ ∈ Prem from the defined subset of its domain to a position.

We also introduce sets of provable positions Ap ⊆ Pos and non-provable
positions Ep ⊆ Pos as well as the set tcs of positions that have been expanded
since the last propagation step and that are relevant to the propagation.

When constructing the proof graph g for a formula φ, we build up a proof
formula pf(g) in parallel, beginning with pf(g0) = aL{φ}M, L M undefined except
for L{φ}M = [] and Ap = Ep = tcs = ∅.
Expanding the proof formula: Say we expand sequent Γ , s.t. g Γ→E g′ for
g′ = exp(g, Γ) = (A′, E′, U ′, X ′, L′1, L

′
2). This means that there are n premises

to Γ (i.e. |AP (Γ)| = n) and for each Σi ∈ AP (Γ), (Γ,Σi) ∈ L′1. Also, for each
Σi ∈ AP (Γ), there is an mi s.t. |{Γj | (Σi, Γj) ∈ AS(Γ)}| = mi and each
such (Σ,Γj) is contained in L′2. In other words, Γ has n premises, each premise
consists of mi sequents and the according transitions are stored in L′1 and L′2.

The according changes to the proof formula and the indexing function are as
follows:
First we expand the sequent Γ :

– Replace aLΓ M with ∨{b1, . . . , bn}.
– For 0 < i ≤ n, if LΣiM is defined (i.e. the premise was encountered before),

replace bi by lLΣiM. If LΣiM ∈ Ap ∪ Ep, add LΓ M to tcs.
– For each remaining bi (i.e. for each new premise), set LΣiM = LΓ Mi.
– Optional: If n = 1, then ∨{b1} = b1 and LΣ1M = LΓ M.
– If n = 0, then add LΓ M to tcs.

Then we expand all the premises Σi:

– Replace any bi with ∧{a1, . . . , ami}.
– For 0 < j ≤ mi, if LΓjM is defined (i.e. the sequent was encountered before),

replace aj by lLΓjM. If LΓjM ∈ Ap ∪ Ep, add LΣiM to tcs.
– For each remaining aj (i.e. for each new sequent), set LΓjM = LΣiMj.
– Optional: If mi = 1, then ∧{a1} = a1 and LΓ1M = LΣiM.
– If mi = 0, then add LΣiM to tcs.
– Replace any aj with aLΓjM.

Propagation in the proof formula: Propagation of A (E) through the proof
formula is realized by iterative approximation of the fixpoints. Any of the rules
from Figure 12 is applied repeatedly for each pj ∈ tcs until no rule may be
applied for this specific pj any more, pj is removed from tcs afterwards:

Condition(s) Changes to Ap (Ep) Changes to tcs

φ|pj = ∧∅ add pj

φ|pj = ∨∅ (add pj)

∃q ∈ Pos.φ|q = lpj , pj ∈ Ap add q add q

∃q ∈ Pos.φ|q = lpj , pj ∈ Ep (add q) add q

φ|p = ∧{ψ1, . . . , ψn}, ∀i ∈ {1 . . . n}.pi ∈ Ap add p add p

φ|p = ∨{ψ1, . . . , ψn}, ∃i ∈ {1 . . . n}.pi ∈ Ap add p add p

φ|p = ∧{ψ1, . . . , ψn}, ∃i ∈ {1 . . . n}.pi ∈ Ep (add p) add p

φ|p = ∨{ψ1, . . . , ψn}, ∀i ∈ {1 . . . n}.pi ∈ Ep (add p) add p

Fig. 12. The simplification rules for propagation in proof formulas

Propagation adds the positions of all newly added empty conjunctions (and
disjunctions) to Ap (Ep) and propagates them through the formula. The set tcs
is empty after each completed propagation step.

The set of all atoms aj that appear in pf(g) is the relevant subset of the set
X of unexpanded sequents of the proof graph.

Lemma 7. {Γ ∈ Seq | LΓ M ∈ Ap} = A, {Γ ∈ Seq | LΓ M ∈ Ep} = E.

Proof. The constructed proof formula is a direct representation of the proof
graph. Repeated application of the rules from Figure 12 iteratively approximates
the fixpoint A (E) and stores the according positions in Ap (Ep).

For more details, see the appendix.

It follows that φ is provable iff [] ∈ Ap and that if [] ∈ Ep, φ is not provable.

Simplification: The following are valid methods for the simplification of the
proof formula:

Contract links correctly.
If ψi = ψj , then ∧{ψi, ψj , . . .} may be replaced by ∧{ψi, . . .}, remove j from

Ik. If ψi = ψj , then ∨{ψi, ψj , . . .} may be replaced by ∨{ψi, . . .}, remove j
from Ik. If φi = ψj , ψh = ∧{φi, φ1, . . . , φn}, then ∨{ψh, ψj , . . .} may be re-
placed by ∨{ψh, . . .}, remove j from Ik. If φi = ψj , ψh = ∨{φi, φ1, . . . , φn}, then
∧{ψh, ψj , . . .} may be replaced by ∧{ψj , . . .}, Ik1 = ∅, remove h from Ik.

A homogenous disjunctive circle ∨{∨{. . . {∨{np, . . .}, . . .} . . .}, . . .} of length
j starting at position p may be replaced by ∨{ψi | i ∈ I} ∪ {np} where I =⋃
{Ik | k = pl} such that l is a position within the circle. Any reference to the

removed positions must be set to p.
A homogenous conjunctive circle ∧{∧{. . . {∧{np, . . .}, . . .} . . .}, . . .} of length

j starting at position p may be replaced by ∧{ψi | i ∈ I} ∪ {np} where
I =

⋃
{Ik | k = pl} such that l is a position within the circle. Any reference to

the removed positions must be set to p.

Notice that additionally to being more efficient than the previous variant, the
new methodology allows for a nice heuristic:

– Only those sequents Γ which have a representation in the current proof
formula need to be explored (i.e. for Γ to be expanded, LΓ M must be a valid
position in the current proof formula).

What about the unexpanded sequents which have no representation in the proof
formula? They either appear as sequent in a premise that already contains one
non provable sequent (s.t. the premise itself is not provable), or they are sequents
from a premise that is no longer needed to be shown to be provable (since there
exists already another provable premise for the same sequent). In both cases,
the provability (or non-provability) of the according sequents does not influence
the overall outcome of the proof.

4.4 Removing Caching

What if we propagate after every step and always ’empty’ the graph? Does
it remove the caching while staying sound and complete and does it lead to
PSPACE?

5 Implementation

. . .

6 Conclusion

. . .

7 Appendix (& old stuff)

Definition 3. A proof formula is defined as follows for i, j ∈ N:

GF 3 ψ, φ := aj | > | ⊥ | ψ ∧ φ | ψ ∨ φ | ni

We also assign a number i ∈ N (its index) to any proof formula φ that
we use and henceforth denote this formula by φi. An indexing function L M :
(Seq+Prem)→ N returns the index of the representing proof formula for either
a sequent Γ or a premise Σ. This function is assumed to be initially undefined
for any sequent or premise (except for {φ}).

A graph formula ϑ for an index set I is just a set ϑ = {ψi | i ∈ I}. A
wellformed graph formula ϑ for an index set I is a graph formula s.t. for any
node operator nj that appears in any of the ψi, j ∈ I. W.l.o.g. we assume that
there is one ψL{φ}M representing our initial sequent {φ} and that all other ψj are
reachable from ψL{φ}M.

Our intuition of a graph formula will be that for truth, falsedom, conjunction
and disjunction it behaves as usual, and the semantics of a node operator ni is
just the semantics of the formula that the node points to (i.e. ψi). An atom aj
will represent the provability status of a sequent, i.e. if a sequent is known to be
provable (not provable), the according atom will in the end evaluate to > (⊥).

To achieve this, we assign two graph formulas gf1(g) = {ψ1
1 , . . . , ψ

n
1 } and

gf2(g) = {ψ1
2 , . . . , ψ

m
2 } to any proof graph g = (A,E,U,X,L1, L2) as follows:

Given a formula φ, we initialize gf1(g0) = gf2(g0) = {aL{φ}M} and continue to
expand the graph formula in step with our expansion of the proof graph. We also
initialize the sets Aseq(g0) = ∅, Eseq(g0) = ∅, Aprem(g0) = ∅ and Eprem(g0) = ∅.

Say we expand sequent Γ , s.t. g
Γ→E g′ for g′ = exp(g, Γ) =

(A′, E′, U ′, X ′, L′1, L
′
2). This means that there are n premises to Γ (i.e.

|AP (Γ)| = n) and for each Σ ∈ AP (Γ), (Γ,Σ) ∈ L′1. Also, for each Σ ∈ AP (Γ),
there is an m s.t. |{Γ ′ | (Σ,Γ ′) ∈ AS(Γ)}| = m and each such (Σ,Γ ′) is con-
tained in L′2. In other words, Γ has n premises, each premise consists of a number
of sequents and the according transistions are stored in L′1 and L′2.

Then the expansion of the first graph formula is realized as follows (where
we obtain a new graph formula gf ′1(g) from gf1(g) by substituting parts of the
graph formula):

1. If n = 0, then there is no rule that may be applied to Γ , i.e. Γ is not provable.
The expanded graph formula is obtained substituting aLΓ M with ⊥.

2. If n = 1, then there is just one rule that may be applied to Γ . This allows us
to directly continue without adding a new proof formula, that is, we replace
aLΓ M with bΣ for the one Σ ∈ AP (Γ) s.t. bΣ represents Σ ∈ AP (Γ) and is
defined as follows:
– if LΣM is yet undefined (i.e. the premise does not yet appear in the proof

graph), then bΣ = ψLΓ M and LΣM := LΓ M, else
– bΣj = nLΣjM.

3. If n > 1, we globally substitute aLΓ M by the disjunction of all bΣj
where each

bΣj
stands for the premise of one of the n possible rule applications to Γ ,

s.t. bΣj
represents Σj ∈ AP (Γ) and is defined as follows:

– if LΣjM is yet undefined (i.e. the premise does not yet appear in the proof
graph), then bΣj = nk for a new k /∈ I, and set LΣjM = k, else

– bΣj = nLΣjM.

We continue with the following case distinction for each new ψk:

1. If the according m = 0, then the premise contains no sequent and is hence
provable. The according ψk is directly defined as >.

2. If m = 1, then Σj contains just one sequent. This allows us to directly
continue without adding a new proof formula. This means that ψk is defined
as follows (for the one Γ ′ s.t. (Σj , Γ ′) ∈ L′2).
– If LΓ ′M is yet undefined (i.e. the sequent does not yet appear in the proof

graph), then ψk = aLΣjM and LΓ ′M := LΣjM, else
– ψk = nLΓ ′M.

3. If m > 1, the new formula ψk consists of the conjunction of all the m atoms
aΓl

for sequents from Σj (where Γl ∈ {Γ ′ | (Σj , Γ ′) ∈ L′2}). Each aΓl
is

defined as follows:
– if LΓlM is yet undefined (i.e. the sequent does not yet appear in the proof

graph), then aΓl
= nk for a new k /∈ I and set LΓlM = k, else

– aΓl
= nLΓlM.

Finally, for every nk that was added in the last step, add a new proof formula
ψk to the graph formula, s.t. ψk = aLΓlM.

This builds a graph formula gf ′1(g) = gf1(g′) that completely characterizes
the current state of the proof while usually being smaller than the proof graph.
However, we maintain the property that the graph formula contains separate
proof formulas for any different combination of sequents and premises that has
yet been encountered (even though the provability of the formula in question
may not depend on many of these combinations).

Definition 4. The contraction of a graph formula φ = {ψ1, . . . , ψn}, I =
{1, . . . , n} is the graph formula that is obtained from φ as follows:

For every i ∈ I, s.t. ψi = nj for some j, replace any occurance of ni by
nj, remove ψi from φ.

Example 4. The graph formula gf1(g) is the contraction (with contracted circles)
of a graph formula that is isomorphic to g.

If we try to further reduce the size of the graph formula while preserving
only the information needed to directly show (or refute) provability, we can do
better. We construct an even smaller graph formula by expanding as follows:

Replace aLΓ M with bLΣ1M ∨ . . .∨ bLΣnM where AP (Γ) = {Σ1, . . . , Σn} (if n = 0,
replace aLΓ M with ⊥). For any premise Σi to Γ we now distinguish three cases:

1. Σi ∈ A(g)prem (Σi ∈ E(g)prem), i.e. the premise has been shown to be
provable (not provable). Then replace bLΣiM with > (⊥).

2. ψLΣiM is contained in gf1(g′) but not in gf1(g). Then leave bLΣiM untouched.
3. ψLΣiM is contained in gf1(g′) and in gf1(g) and also Σi /∈ E(g)prem ∪
A(g)prem, i.e. the premise was encountered before and is not decided yet.
Then take the flattening of the whole sub graph formula from gf1(g′) at
LΣiM and add it to the current graph formula. Replace bLΣiM by nLΣiM. Sim-
plify this (and make any other appearance of the formula point to LΣiM).

Next, replace every remaining bLΣiM with aLΓ1M ∧ . . . ∧ aLΓmM where Σi is as-
sumed to contain just the m sequents Γ1, . . . , Γm (if m = 0, replace the according
bLΣiM with >). We distinguish the cases:

1. Γi ∈ A(g)seq (Γi ∈ E(g)seq), i.e. the sequent has been shown to be provable
(not provable). Then replace aLΓiM with > (⊥).

2. ψLΓiM is contained in gf1(g′) but not in gf1(g). Then leave aLΓiM untouched.

3. ψLΓiM is contained in gf1(g′) and in gf1(g) and also Γi /∈ E(g)seq ∪ A(g)seq,
i.e. the sequent was encountered before and is not decided yet. Then take
the flattening of the whole sub graph formula from gf1(g′) at LΓiM and add
it to the current graph formula. Replace aLΓiM by nLΓiM. Simplify this (and
make any other appearance of the formula point to LΓiM).

The constructed graph gf2(g) fully represents the current state of the proof
(as stored in graph g) while being minimal.

Definition 5. The flattening of a graph formula φ = {ψ1, . . . , ψn}, I =
{1, . . . , n} is the graph formula that is obtained from the concraction of φ as
follows:

For every i ∈ I, s.t. ni occurs only one time in φ, replace ni by ψi,
remove ψi from φ.

Example 5. The graph formula gf2(g) is the flattening (with flattened circles)
of a graph formula that is isomorphic to g.

Contraction of circles: Whenever a link ni to a proof formula ψi is added
to the graph formula gf1(g) s.t. ψi appears in one of the paths from the for-
mula ψL{φ}M (that represents {φ}) to the proof formula that is currently being
expanded, it may be possible to contract the circle in the graph formulas.

In more detail: Let ψ1, . . . , ψm be a circle of m formulas from gf1(g), i.e. ψi

contains at least one occurance of ni+1 for 0 < i < (m− 1) and ψm contains n1.
If the circle is homogenous, i.e. either for all 0 < i < m, ψi = nj ∨ . . . ∨

nk (disjunctive homogenous circle) or for all 0 < i < m, ψi = nj ∧ . . . ∧ nk
(conjunctive homogenous circle), we may collapse the circle in gf1(g) as follows:

The indexing set I of a circle is defined as follows: I =
⋃

0<i<m

ind(ψi) \

{1, . . . ,m}, where ind(nj ∨ ψ) := {j} ∪ ind(ψ), ind(nj ∧ ψ) := {j} ∪ ind(ψ).
A homogenous circle may be replaced by a formula ψc.
For disjunctive homogenous circles, ψc := nc ∨

∨
i∈I

ni, For conjunctive ho-

mogenous circles, ψc := nc ∧
∧
i∈I

ni.

Replace every occurance of ni (for 0 < i < m) in the current graph formula
by nc.

Flattening of circles: For gf2(g), define ψc as the flattening of the whole sub
graph formula from gf1(g) at the position i. Replace every occurance of ψc or
ni by nc.

Definition 6. Any sequent Γ (premise Σ) s.t. i ∈ *Γ + (i ∈ *Σ+) is said to have
a representation in ψi.

Example 6. all.ex in graph iff contraction eval to true

Now that we defined the expansion of the two graph formulas, we describe
propagation in the second graph formula, where we expand the sets A(g)seq,
E(g)seq, A(g)prem and E(g)prem:

The propagation is in fact a process of propositional simplification, executed
on the current gf2(g). The following propositional tautologies (and their sym-
metric counterparts) are applied:

– (> ∨ φ) → > (only one premise needs to be provable). Also set A(g′)seq =
A(g)seq∪topsseq, where topsseq are all the sequents that have a representation
in > ∨ φ. Also set A(g′)prem = A(g)prem ∪ topsprem, where topsprem are all
the sequents that have a representation in > ∨ φ.

– (⊥ ∨ φ) → φ (not provable premises are removed from the formula). Also
set E(g′)seq = E(g)seq ∪ bot where bot is the sequent that is represented
by ⊥. Also set E(g′)prem = E(g)prem ∪ bot where bot is the premise that is
represented by ⊥.

– (> ∧ φ) → φ (provable sequents are removed from the formula). Also set
A(g′)seq = A(g)seq ∪ top where top is the sequent that is represented by
>. Also set A(g′)prem = A(g)prem ∪ top where top is the premise that is
represented by >.

– (⊥∧φ)→ ⊥ (all sequents need to be provable). Also set E(g′)seq = E(g)seq∪
bots, where bots are all the sequents that have a representation in ⊥∧φ. Also
set E(g′)prem = E(g)prem ∪ bots, where bots are all the premises that have
a representation in ⊥ ∧ φ.

– (ψi = >) → (ni → >). Trivial proof formulas may be collapsed. Also set
A(g′)seq = A(g)seq ∪ top where top is the sequent that is represented by
>. Also set A(g′)prem = A(g)prem ∪ top where top is the premise that is
represented by >.

– (ψi = ⊥) → (ni → ⊥). Trivial proof formulas may be collapsed. Also set
E(g′)seq = E(g)seq ∪ bot where bot is the sequent that is represented by
⊥. Also set E(g′)prem = E(g)prem ∪ bot where bot is the premise that is
represented by ⊥.

As soon as {φ} ∈ A(g)seq or {φ} ∈ E(g)seq, we are finished.

The following lemma establishes the correctness of this optimization:

Lemma 8. Given a graph g = (A,E,U,X,L1, L2),

A = A(g)seq,
E = E(g)seq.

Proof. We treat the case of A, the case of E is dual.
First we show that A is contained in A(g)seq.
We proceed by induction over all expansion and propagation steps of the

graph: A′ is a subset of A′(g)seq when the sets are initialized (induction base).
Expansion does not change A or A(g)seq. Propagation does change both sets. So
we assume, that A is a subset of A(g)seq and have to show that the inclusion
A′ ⊆ A′(g)seq holds (where g →P g

′).
So let Γ ∈ A′. By assumption, Γ was added to A during the last step of

propagation. So, Γ is in the greatest fixpoint of WL, which means that ∃(Γ,Σ) ∈

L′1.∀(Σ,Γ ′) ∈ L′2.Γ ′ ∈ A′. That is intuitively, either Γ itself was expanded since
the last propagation or enough of the respective Γ ′ have been set to true since
the last propagation.

Assume, Γ has been expanded. We show that Γ is also added to A(g)seq,
distinguishing several cases:

– The case that there is no premise to Γ is impossible since Γ is in the fixpoint.
– Any premises to Γ that are already known to be provable (i.e. all contained

sequents are in A) or known to be not provable (i.e. one contained sequent
is in E), are also contained in A(g)prem (or E(g)prem).

– For any premises to Γ that have been encountered before but are still unde-
cided, existence of a node that represents the premise is created.

– For any premises to Γ that have not been encountered before, a disjunct that
represents the premise is created.

For each premise Σj to Γ , we distinguish upon the contained sequents:

– If Σj contains no sequents, the according node/disjunct is set to > s.t. Γ is
added to A(g)seq upon propagation.

– Any already decided sequents Γ ′ ∈ A (or Γ ′ ∈ E) from Σj are by assumption
also contained in A(g)seq (or E(g)seq).

– For any sequents in Σj that have been encountered before but are still unde-
cided, existence of new node that represents the sequent is ensured.

– For any sequents in Σj that have not been encountered before, a conjunct
that represents the sequent is created.

Now, since we know that ∃(Γ,Σ) ∈ L′1.∀(Σ,Γ ′) ∈ L′2.Γ ′ ∈ A′ (i.e. we know
that there is either an empty premise to Γ or a premise to Γ ′ whose sequents
are all in A′. For each premise, we have a disjunct, representing it. For each
contained sequent, we have conjunct, representing it. Since there is a premise
to Γ ′ whose sequents are all in A′, by assumption we know that there is one
disjunct whose conjuncts all simplify to >.

Circles?
For the other direction, we show that A(g)seq is contained in A.
Again we proceed by induction, initialization is the base case, expansion does

not change the sets. If propagation adds a sequent Γ to A(g)seq, then one of the
following three rules was applied, s.t. Γ had a representation in the simplified
formula:

1. (> ∨ φ) → > (only one premise needs to be provable). Also set A(g′)seq =
A(g)seq∪topsseq, where topsseq are all the sequents that have a representation
in >. Also set A(g′)prem = A(g)prem ∪ topsprem, where topsprem are all the
sequents that have a representation in >.

2. (> ∧ φ) → φ (provable sequents are removed from the formula). Also set
A(g′)seq = A(g)seq ∪ top where top is the sequent that is represented by
>. Also set A(g′)prem = A(g)prem ∪ top where top is the premise that is
represented by >.

3. (ψi = >) → (ni → >). Trivial proof formulas may be collapsed. Also set
A(g′)seq = A(g)seq ∪ top where top is the sequent that is represented by
>. Also set A(g′)prem = A(g)prem ∪ top where top is the premise that is
represented by >.

In the first case, Γ was either represented by (>∨ φ) or by >. By induction,
we only treat the first variant. We know that the disjunction was introduced due
to the fact that there is at least one provable premise to Γ (the one having a
representation in top). Obviously, this premise contains only provable sequents
s.t. Γ ∈ A′ as required.

In the second case, Γ was represented by >. How could it be represented by
>? Either because there just one empty premise to it or since there were other
rules applied before (induction).

In the third case, Γ was represented >. How could it be represented by >?
Either because there just one empty premise to it or since there were other rules
applied before (induction).

Intuitively, the fixpoint computation is just the same as constructing the
complete graph formula every time and then simplifying it (but using previously
known simplifications stored in A/E).

The new method gets rid of constructing the complete formula again and
again by storing it and just expanding it with all the sequents which were added
since the last propagation step.

In more detail, A equals the set of sequents which are represented by atoms
in the (unsimplified but flattened) graph formula which may be set to > by
a successful leaf or by simplification. Correspondingly, E equals the set of
sequents which are represented by atoms in the (unsimplified but flattened)
graph formula which may be set to ⊥ by an unsuccessful leaf or by simplification.

