
M4M 2007

CoLoSS:
The Coalgebraic Logic Satisfiability Solver

(System Description)

Georgel Calin1

Jacobs University Bremen, Germany

Rob Myers2 Dirk Pattinson3

Imperial College London, UK

Lutz Schröder4,5

DFKI Lab Bremen and Universität Bremen, Germany

Abstract

CoLoSS, the Coalgebraic Logic Satisfiability Solver, decides satisfiability of modal formulas in a generic
and compositional way. It implements a uniform polynomial space algorithm to decide satisfiability for
modal logics that are amenable to coalgebraic semantics. This includes e.g. the logics K, KD, Pauly’s
coalition logic, graded modal logic, and probabilistic modal logic. Logics are easily integrated into CoLoSS
by providing a complete axiomatisation of their coalgebraic semantics in a specific format. Moreover,
CoLoSS is compositional: it synthesises decision procedures for modular combinations of logics that include
the fusion of two modal logics as a special case. One thus automatically obtains reasoning support e.g. for
logics interpreted over probabilistic automata that combine non-determinism and probabilities in different
ways.

Keywords: Modal logic, automatic proving, coalgebra.

Introduction

While there are numerous automatic proof tools for modal logics with a standard
Kripke semantics, developed in particular in tow of the recent rise of modal logic as
a background formalism for description logics (e.g. Pellet [19], FaCT/FaCT++ [20],

1 g.calin@iu-bremen.de
2 rm606@doc.ic.ac.uk
3 dirk@doc.ic.ac.uk
4 Lutz.Schroeder@dfki.de
5 Work performed under the DFG project Generic Algorithms and Complexity Bounds in Coalgebraic
Modal Logic (SCHR 1118/5-1)

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:g.calin@iu-bremen.de
mailto:rm606@doc.ic.ac.uk
mailto:dirk@doc.ic.ac.uk
mailto:Lutz.Schroeder@dfki.de

Calin et al.

and RACER [3]), almost no tool support exists (with the notable exception of the
conditional logic prover CondLean [11]) for a growing number of newly designed
non-normal modal logics whose semantics involves structures which are different
from, and mostly more complex than, standard Kripke frames. Examples of such
logics include probabilistic modal logic [9,5], majority logic [12], coalition logic [13],
and Presburger modal logic [2].

Coalgebraic modal logic has recently been shown to provide a suitable generic
semantic framework for modal logics which in particular allows the design of generic
decision procedures that can be instantiated for specific modal logics with moderate
effort. In particular, many logics axiomatised without nesting of modal operators
can be decided in PSPACE using a generic satisfiability solver [15].

Here, we give a system description of the Coalgebraic Logic Satisfiability Solver
(CoLoSS), an implementation framework in which instances of such generic algo-
rithms are easily integrated. CoLoSS is implemented in Haskell and exploits the
Haskell type class mechanism to facilitate easy creation of new logic instances; it
comes with a (growing) number of pre-implemented instances including K, KD,
graded and probabilistic modal logics, and coalition logic. Implementing a new
logic instance essentially amounts to no more than defining its syntax and provid-
ing an interface function embodying its axiomatisation.

CoLoSS moreover supports the modular combination of logics and decision pro-
cedures described in [16]. This means e.g. that by providing instances for proba-
bilistic modal logic and multi-agent K, one automatically obtains instances also for
composite modal logics such as the modal logic of Segala systems (cf. Sect. 3) or
the modal logic of alternating systems [16].

The material is organised as follows. We provide brief summaries of the theoret-
ical background on the generic PSPACE algorithm for coalgebraic modal logic and
logic combination in Sections 1 and 3. The implementation of the core algorithm for
satisfiability (in fact, validity) checking is described in Sect. 2, while the realisation of
the logic combination mechanism is discussed in Sect. 4. The source code of CoLoSS
is available under http://www.doc.ic.ac.uk/~dirk/COLOSS/coloss.tar.gz

1 Generic Validity Checking for
Coalgebraic Modal Logics

We briefly review coalgebraic modal logic as a generic semantic framework for modal
logic, and the generic PSPACE decision procedure for satisfiability based on it [15],
which we dualise to an algorithm for validity. The syntax of a modal logic is given
by a modal signature Λ containing modal operators of given arities; the set F(Λ) of
Λ-formulas is then determined by the grammar

ψ ::= ⊥ | ψ1 ∧ ψ2 | ¬ψ | L(ψ1, . . . , ψn),

where L ∈ Λ is n-ary. We parametrize the semantics of such modal languages by
the choice of a Λ-structure M (over T) consisting of a signature functor

T : Set→ Set

2

Calin et al.

on the category Set of sets and maps, and an assignment of an n-ary predicate
lifting M[[L]] for T , i.e. a natural transformation

M[[L]] : Qn → Q ◦ T op

with Q : Setop → Set denoting contravariant powerset, to every n-ary modal
operator L ∈ Λ. We omit the mention ofM when this is unlikely to cause confusion.
Recall that a T -coalgebra C = (X, ξ) consists of a set X of states and a transition
map ξ : X → TX. The structure M determines satisfaction relations |=C between
states x ∈ X of T -coalgebras C = (X, ξ) and F(Λ)-formulas over V . The relation
|=C is defined inductively, with the usual clauses for boolean operators. The clause
for an n-ary modal operator L is

x |=C L(φ1, . . . , φn) ⇔ ξ(x) ∈ [[L]]([[φ1]]C , . . . , [[φn]]C)

where [[φ]]C = {x ∈ X | x |=C φ}. We drop the subscripts C when these are clear
from the context. Our main interest is in the validity problem overM (and its dual,
the satisfiability problem):

Definition 1.1 An F(Λ)-formula φ is valid if x |=C φ for every state x in every
T -coalgebra C.

Examples of structures will be given below. The decision procedure for satisfiability
described in [15] relies on a complete axiomatisation w.r.t. the above semantics in
the shape of one-step rules φ/ψ, where φ is a propositional combination of variables
a ∈ V and ψ is a clause over atoms of the form L(a1, . . . , an), L ∈ Λ, ai ∈ V .
This axiomatisation is moreover required to be closed under rule resolution, where
a resolvent of two rules is formed by resolving their conclusions and conjoining their
premises, and under contraction, i.e. removal of duplicate literals in rule conclusions
arising after identification of two variables.

Given such an axiomatization by a set R of rules, denote by RC the extension
of R by replacement of equivalents. One then has the following algorithm on an
alternating Turing machine:

Algorithm 1 (Decide validity of φ ∈ F(Λ))

(i) (Universal) Choose a clause θ from a conjunctive normal form (CNF) of φ.

(ii) (Existential) Guess a non-empty subclause ρ of θ.

(iii) (Existential) Guess χ/ψ ∈ RC such that ρ ≡ ψσ for some substitution σ.

(iv) (Universal) Choose a clause γ from a CNF of χ.

(v) Recursively check that γσ is valid.

The algorithm succeeds if all possible choices at steps marked universal lead to
successful termination, and for all steps marked existential, there exists a choice
leading to successful termination.

Observe that in Step (iii), it suffices to take rules modulo propositional equiv-
alence of premises. To ensure polynomial runtime of the algorithm, one needs to
require that rules are coded in such a way that one needs to consider only rule codes
of polynomially bounded size. Rule sets satisfying this condition and a few minor

3

Calin et al.

K :
∧n
i=1 αi → β∧n

i=1 2αi → 2β
(n ≥ 0) KD : K and

¬
∧n
i=1 αi

¬
∧n
i=1 2αi

(n ≥ 0)

GML :
∑n

i=1 riαi ≥ 0∨n
i=1 sgn(ri)3ki

αi

(n ≥ 1, ri ∈ Z− {0},∑
ri<0 |ri|(ki + 1) ≥ 1 +

∑
ri>0 riki)

PML :
∑n

i=1 riαi ≥ k∨
1≤i≤n sgn(ri)Lpiαi

 n ≥ 1, ri ∈ Z− {0},∑n
i=1 ripi

{
< k if ∀i. ri < 0
≤ k otherwise

CL :

∨n
i=1 ¬αi∨n

i=1 ¬[Ci]αi

∧n
i=1 αi → (β ∨

∨m
j=1 cj)∧n

i=1[Ci]αi → ([D]β ∨
∨m
j=1[N]cj)

(m,n ≥ 0, Ci ⊆ D,
Ci ∩ Cj = ∅
for i 6= j)

Fig. 1. Proof rules for the logics of Example 1.3

sanity requirements are called PSPACE -tractable. One obtains

Theorem 1.2 IfM is completely axiomatised by a set R of one-step rules which is
PSPACE-tractable and closed under resolution and contraction, then Algorithm 1
decides validity of Λ-formulas over M in alternating polynomial time, i.e. in poly-
nomial space.

By virtue of completeness, validity coincides with provability. The hypothesis
of the above theorem are in particular satisfied by the following logics:

Example 1.3 We give informal descriptions of some coalgebraic modal structures
discussed more formally in [15]:

(i) The modal logic K is interpreted over the covariant powerset functor P by
[[2]]XA = {B ∈ P(X) | B ⊆ A}.

(ii) Similarly, the logic KD is interpreted over the non-empty powerset functor.

(iii) Graded modal logic (GML) with modal operators 3k ‘more than k successors
satisfy . . . ’ is interpreted over the finite multiset functor, whose coalgebras are
multigraphs, i.e. graphs whose edges carry multiplicities.

(iv) Probabilistic modal logic (PML), with operators Lp ‘with probability at least
p, the successor satisfies . . . ’, is interpreted over the finite distribution functor,
whose coalgebras are finitely branching Markov chains.

(v) Coalition logic (CL) over a fixed finite set N of agents, with operators [C]
‘coalition C ⊆ N can force . . . in the next move’, is interpreted over a class-
valued functor whose coalgebras are game frames in the sense of [13].

Figure 1 shows rule sets for these logics satisfying the assumptions of Theorem 1.2.
The arithmetic expressions in the rule premises for GML and PML refer to the
(propositionally expressible) arithmetic of characteristic functions, and sgn(r)φ is
φ if r > 0, and ¬φ otherwise.

4

Calin et al.

2 Implementation of the Generic PSPACE Algorithm

CoLoSS is implemented in Haskell [14] and makes use of polymorphic types and type
classes to separate the generic aspects of CoLoSS from the details of a particular
logic. From this perspective, a particular logic instance is identified by a type which
comprises a set of (unary) modal operators describing the syntax of the logic; the
class interface to be implemented for each instance essentially consists of a matching
function embodying a set of one-step rules that governs the deductive process.

We begin by describing how CoLoSS represents the syntax of different modal
logics in a generic way. The syntax of each particular modal logic is represented
using an algebraic data type that lists the modal operators provided by the logic.
For K (and similarly for KD) we have

data K = K deriving (Eq,Show)

whereas the syntax of Pauly’s coalition logic is given by

data C = C [Int] deriving (Eq, Show)

so that every modal operator of coalition logic is specified by a list of agents (the
total number of agents is presently hardwired as a constant).

The syntax of modal logics as such then becomes a polymorphic type, where the
type variable represents the modal operators of the logic, viz:

data L a =
F | T | Atom Int | Neg (L a) | And (L a) (L a) | Or (L a) (L a) |
M a (L a) deriving (Eq,Show)

The last line of the above definition is responsible for integrating the modalities of
a specific language in that it allows constructing a formula by means of a modal
operator (an inhabitant of the type variable a) and a formula of the language that
is being defined.

The formulas of, say, coalition logic are then the inhabitants of the type L C,
in which e.g. the formula [0, 2, 4]p0 → [0]p0 (which expresses that if agent 0 can
force p0 with the help of agents 2 and 4, then she can force p0 already herself) is
represented as

(cbox [0, 2, 4] (p 0)) --> (cbox [0] (p 0))

with the help of an infix operator -->, the abbreviation p for Atom, and the modality

cbox :: [Int] -> L C -> L C; c ag phi = M (C ag) phi

that are added as syntactic sugar. Applying the CoLoSS functions provable and
satisfiable confirms that the above formula is (of course) satisfiable but not
provable, while the formula

(cbox [1 .. 3] (cbox [3 .. 5] (p 1) /\ cbox [1,2] (p 2))
/\ cbox [4] (cbox [3] (p 2) /\ cbox [1,2] (p 1))) -->

cbox [1 .. 5] (cbox [1 .. 5] ((p 1) /\ (p 2)))

is provable.
The logic-specific part of the generic provability (validity) checker is encapsu-

lated in Steps (iii) and (iv) of Algorithm 1, which pass from the conclusions to

5

Calin et al.

premises of one-step rules. It is this matching process that forms the core of the
interface of the generic logic class in CoLoSS. In other words, every instance of the
logic class in CoLoSS (embodied by the data type that encodes the modal operators)
needs to provide a function that returns the set of rule matchings of a particular
clause. Thus, the type class Logic is defined as follows:

class (Eq a) => Logic a where
match :: Clause a -> [[L a]]

where inhabitants of the type Clause a consist of two lists that collect positive
and negative literals, respectively, over atoms of the form L(φ1, . . . , φn), where L
is a modal operator. The result of match c is a list of rule premises such that c is
provable iff one of the premises in the list is provable; each premise is given as a list
of formulas representing the clauses of its CNF, with the substitution according to
the matching with c already performed. (In a parallel implementation, the two logic
specific steps of Algorithm 1 have been implemented as separate interface functions,
and the substitution step has been handled generically; the relative merits of the
two approaches are under investigation.)

Since the resolution closed rule set for K is∧n
i=1 ai → b∧k

i=1 2ai → 2b
,

we have the following instance declaration for this logic:

instance Logic K where
match (Clause (pl,nl)) =
let (nls,pls) = (map neg (strip nl), strip pl)
in map (\x -> [disj (x:nls)]) pls

where strip removes the outermost 2 from every atom 2φ in a list and disj turns
a list of formulas into a disjunction.

That is to say that the set of matchings of a given clause χ =
∨
i∈I ¬2φi ∨∨

j∈J 2ψj consists of all formulas
∧
i∈I φi → ψj , j ∈ J . Note that – in this partic-

ular case – conjunctions over a subset I ′ ⊆ I can be ignored as provability of the
formula

∧
i∈I′ φi → ψi implies that of

∧
i∈I φi → ψj as returned by the matching

algorithm. Similarly, permutations of the literals in the conclusion can be ignored,
as such permutations induce propositionally equivalent premises. More generally,
permutations can be ignored when they lead to premises that arise also by matching
with the original conclusion.

The axiomatisations of the other logics that are currently implemented in
CoLoSS are represented similarly. We comment on two particular cases: In the
rule set ∧n

i=1 ai → b ∨
∨m
j=1 cj∧n

i=1[Ci]ai → [D]b ∨
∨m
j=1[N]cj

of coalition logic, we have to pay heed to the side condition that the Ci are pairwise
disjoint subsets of D (recall that N represents the set of all agents). We can match
against this condition by looking for cliques in the graph whose nodes are the Ci
with edges from Ci to Cj if Ci and Cj are disjoint. (Note that the number of agents

6

Calin et al.

is fixed, so that this does not add another layer of NP -hardness.)
For graded modal logic and probabilistic modal logic, we have to compute an

upper bound on the coefficients that need to be taken into consideration to cover
all rule matchings. A glance at the general format of the rule premise for these
logics shows that it suffices to consider solutions which are pointwise maximal. It
is conceivable that integer linear programming methods could be fruitfully applied
to speed up the search for such solutions.

Given a function that computes rule matchings for a particular logic, the generic
part of the algorithm that decides provability computes the conjunctive normal form
of an input formula and recursively checks that every component of the conjunctive
normal form has at least one provable matching, so that the heart of the algorithm
takes the following form:

provable :: (Logic a) => L a -> Bool
provable phi = all (\c -> any (all provable) (match c)) (cnf phi)

A comment is in order as to whether the above function really uses polynomial
space. On the surface it seems that overly large objects, such as the CNF of phi or
the list of matchings for a given clause, are being passed around. However, Haskell
is a non-strict language where compilers employ lazy evaluation; as a consequence,
entries in large lists are computed on a by-need basis, and one can rely on built-in
memory management for efficiency of space usage.

3 Modular Satisfiability Checking for Composite Logics

It has variously been observed that coalgebraic modal logic lends itself to modulari-
sation in the sense that logics and structures can be composed in unison, preserving
properties such as soundness and completeness [1]. An improved approach to logic
composition in this sense that allows also for the modular treatment of algorithmic
results such as the ones presented in Sect. 1 has been suggested in [16]. The crucial
novelty is to interpret composite logics, whose formulas are naturally multi-sorted,
over multi-sorted coalgebras. For purposes of the CoLoSS implementation, it suf-
fices to understand the syntactic aspects of the logic combination mechanism, which
we recall below.

As a motivating example, consider the modal logic for Segala systems [8]. Recall
that in a (simple) Segala system [17,18], each system state can non-deterministically
perform actions that lead to a probability distribution over its successor states:

•
a
��~~~~~

a ��
b

��@@@@@

◦
0.2

��~ ~
~

0.8���
� ◦

1 ���
� ◦

0.5 ���
�

0.5
��@

@
@

• • • • •

The logic of [8] distinguishes non-deterministic formulas and probabilistic formulas,
which are inductively given by

Ln 3 φ ::= > | φ1 ∧ φ2 | ¬φ | 2aψ (nondeterministic formulas; ψ ∈ Lp, a ∈ A)
Lp 3 ψ ::= > | ψ1 ∧ ψ2 | ¬ψ | Lqφ (probabilistic formulas; φ ∈ Ln, q ∈ [0, 1] ∩Q).

7

Calin et al.

One thus has a layered two-sorted logic, which one can regard as generated by a
modal signature comprising sorts n and p (nondeterminism and probability) and
two families of modal operators

3a : p→ n (a ∈ A) and Lq : n→ p (q ∈ [0, 1] ∩Q).

This logic arises as a combination of two features, nondeterminism and uncertainty,
in a way that can formalised as follows (see [16] for details):

An n-ary feature F comprises a multi-sorted modal signature, where modal oper-
ators have profiles L : i1,ik → ∗ made up of formal input sorts 1 ≤ i1, . . . , ik ≤ n
and a formal target sort ∗. Features are additionally equipped with a coalgebraic
semantics, consisting of an n-ary set functor [[F]] and interpretations of the modal
operators as suitable predicate liftings, and sets of one-step rules, which now take
the form

φ1 : 1; . . . ;φn : n
ψ

,

where for i = 1, . . . , n, φi is a purely propositional formula over a set Vi of propo-
sitional variables and ψ is a clause over atoms of the form L(a1, . . . , ak) with
L : i1, . . . , ik → ∗ in Λ and aj ∈ Vij , j = 1, . . . , k. Premises φi omitted in the
notation of concrete rules are, by default, equal to >.

Example 3.1 The logics of Example 1.3 can be regarded as unary features K, KD,
GML, PML, CL. Several typical constructions in logic combination can be cast as
binary features as follows, with associated rule sets shown in Figure 2.

Choice: The binary feature Ch, interpreted over the disjoint binary sum functor,
has a single modal operator + : 1, 2→ ∗, read as a case statement.

Fusion: The binary feature Fu, interpreted over the binary product functor, has
two modal operators [πi] : i → ∗, i = 1, 2, making statements about the two
components of a pair. The fusion of two logics with signatures Λ1, Λ2 is coded
by translating Lφ to [πi]Lφ for L ∈ Λi.

Conditionality: The binary feature Cnd, interpreted over the binary functor
λX, Y.Q(X)→ Y (with Q denoting contravariant powerset and→ denoting func-
tion space) has a binary modal operator •⇒: 1, 2 → ∗, read as a non-monotonic
generalised conditional.

The construction of logics by combination of features is formalised by the notion
of gluing. A gluing G is an S-indexed family of terms over a set S of basic sort
symbols formed using features as function symbols. Such a family of terms induces in
the obvious way an endofunctor [[G]] on SetS , whose coalgebras serve as the semantic
structures for the induced modal logic. The latter is itself multi-sorted, with one
syntactic sort for each proper subexpression occurring in G (the full expression at a
sort s itself being identified with the base sort s) and formulas generated by a rather
obvious typing discipline, similarly for deduction. E.g. the logic in the motivating
example above is fully described as the gluing

Seg = (n→ HML(PML(n))),

8

Calin et al.

Ch :
(
∧m
j=1 αj →

∨n
k=1 βk) : 1 (

∧m
j=1 γj →

∨n
k=1 δk) : 2∧m

j=1(αj + γj)→
∨n
k=1(βk + δk)

Fu :
(
∧m
j=1 αj →

∨n
k=1 βk) : i∧m

j=1[πi]αj →
∨n
k=1[πi]βk

(i = 1, 2)

Cnd :
(
∧
δ1,δ2∈{γ1,...,γm,γ′

1,...,γ
′
n}(δ1 ↔ δ2)) : 1 (

∧m
j=1 αj →

∨n
k=1 βk) : 2∧m

j=1(γj
•⇒ αj)→

∨n
k=1(γ′k

•⇒ βk)

(m,n ≥ 0)

Fig. 2. Rule sets for the features of Example 3.1

where HML is the feature associated to Hennessy-Milner logic, i.e. the multi-agent
version of K.

The main result of [16] states that gluings can be flattened, preserving satisfi-
ability of formulas. Here, a gluing is called flat if each of its feature expressions
contains exactly one feature. The flattening construction introduces a new sort for
each proper subexpression occurring in a given gluing. E.g. the flattening of Seg is

(n→ HML(p), p→ PML(n)),

where p is a new sort representing the subexpression PML(n).
The advantage of using flat gluings is that the results of Sect. 1 generalise

straightforwardly to flat gluings. Validity of formulas in a flat gluing (and hence,
by the equivalence of a gluing with its flattening, in any gluing) is thus decidable
by a modularised variant of Algorithm 1 which has a validity-checking routine for
each sort; these routines call each other recursively (as in Step (v) of the algorithm)
according to the typing discipline of the gluing that defines the logic.

4 Provability Checking for Combined Logics

To check provability for combined logics, CoLoSS synthesises a Haskell program that
implements the particular combination of logical features at hand, based on exist-
ing implementations of the individual features. The main difficulty which requires
resorting to this seemingly roundabout strategy is to generate mutually recursive
datatypes of well-sorted formulas from a given gluing, a challenge which seems to
overtax the expressive means of existing polytypic libraries and extensions of Haskell
(cf. e.g. [10]). The only alternative to code synthesis that comes to mind is to use a
deep encoding of the typing discipline (while the present approach just uses Haskell’s
type checking mechanisms). This is left for future versions of the tool that would
incorporate a full logic definition language.

In CoLoSS, combined logics are described as gluings as discussed in the previous
section. The flattening of a gluing is then constructed automatically (presently
only for single-sorted gluings). At present, CoLoSS supports the features listed in
Fig. 3. The syntax given in the figure is partly based on a syntactic sugaring of

9

Calin et al.

Unary features

K, KD The logics K and KD

CL Coalition logic

GML Graded modal logic

PML Probabilistic modal logic

HML Hennessy-Milner logic

Binary features

<+> Binary Choice

<*> Fusion

Auxiliary symbols

S Formal sort variable

<.> Feature application

Fig. 3. Features presently integrated in CoLoSS

a datatype of single-sorted gluings whose constructors are the unique sort variable
S and unary and binary feature application: the infix operator <.> abbreviates
application of unary features, and application of the two binary features presently
implemented is sugared in the shape of the infix operators <+> and <*>, respectively,
with precedence ordering <.>,<*>,<+> and <.> associating to the right. Thus, one
has e.g. the following gluings

Seg = HML <.> PML <.> S Alt = HML <.> S <+> PML <.> S
KKD = KD <.> S <*> K <.> S PC = CL <.> PML <.> S

with Seg corresponding to simple Segala systems as in the previous section and
Alt representing the logic for alternating automata [16] where non-deterministic
and probabilistic transitions can be interleaved arbitrarily [4]. The gluing KKD is
the fusion of K and KD, and PC represents a logic of probabilistic coalitions that
allows reasoning about coalitional strategies with a probabilistic outcome; we shall
return to this logic at the end of this section. Flat gluings can be generated using
the function flatten; e.g. flatten Seg yields the flat gluing

[FlatUnary HML 1, FlatUnary PML 0]

where non-negative integers figure as sort names. We read the above expression as
the gluing

(s0 → HML(s1), s1 → PML(s0))

of the previous section.
Given a flat gluing G, the function call gen G then produces the provability

checker for the logic associated with G in the file MySat.hs. This file defines in
particular the syntax of the combined logic and contains copies of the matching
routines of the component logics, rewired by adjusting their typing as appropriate to
the structure of the gluing. This process is governed by multi-parameter type classes
that embody the fact that the matching functions now connect potentially different
logics. In general, one needs one such type class per arity; as the features appearing
in typical applications tend to be at most binary, CoLoSS presently implements only
two classes for unary and binary features, respectively, with the following interface
declarations:

class (Logic f, Logic g) =>
UnaryMatch f g | f -> g where

10

Calin et al.

matchu :: Clause f -> [[g]]

class (Logic f, Logic g, Logic h) =>
BinaryMatch f g h | f -> g, f -> h where
matchb :: Clause f -> [([g],[h])]

Here, we use one of the Glasgow Haskell extensions, namely functional depen-
dencies [7] f -> g etc., which indicate that there is at most one instance for a
given source logic f. This allows in particular the use of class constraints such as
UnaryMatch f g in polymorphic functions whose types do not mention g. We use
this feature to implement polymorphic provability functions according to the arity
of the feature at hand, e.g. for binary features

provable2 :: BinaryMatch f g h => f -> Bool
provable2 phi =
let both (as,bs) = (all provable as) && (all provable bs)
in all (\c -> any (\pair -> both pair) (matchb c))(cnf phi)

These arity-specific implementations of the provability function are associated with
a single provability function provable in the Logic class interface, on which recur-
sive calls are made as illustrated above without having to keep further record of
arities. Note the exploitation of Haskell type inference to ensure the correct wiring
of the respective provability functions.

As logical features can be used more than once in a flat gluing, CoLoSS uses
running indices to disambiguate potential duplicate ocurrences of the same feature.
For the case of Segala systems, CoLoSS generates the following language definition:

data L0 = (propositional connectives) | HML0 Char L1
data L1 = (propositional connectives) | PML1 Rational L0

(omitting the deriving clauses). Here, the modal operator 2a of Hennessy-Milner
logic is represented as HML0 ’a’ and the operator Lp of probabilistic modal logic is
written PML1 p, with the numbers (0 and 1) being the result of the disambiguation
process.

As laid out in Sect. 3, a formula is provable iff every component of its conjunctive
normal form allows for at least one matching that is itself provable. In the case of
binary features, this necessitates that matching produces a pair of formulas, both
of which then have to be checked for provability as shown above. This is reflected
e.g. in the matching function for the (binary) choice feature in the gluing Alt for
alternating systems above:

instance BinaryMatch L0 L1 L2 where
matchb (Clause (pls,nls)) =
let f1 = (disj $ striplst pls) \/ (ndisj $ striplst nls)

f2 = (disj $ striplst pls) \/ (ndisj $ striplst nls)
in [([f1],[f2])]

where ndisj produces the disjunction of the negations of all formulas contained in
a given list. Note that the type of matchb above is:

matchb :: Clause L0 -> [([L1],[L2])]

11

Calin et al.

In the logic of simple Segala systems defined by the gluing Seg, the formula

2i(L0.83ip0 → L0.53ip0)

can now be written as

box ’i’ ((l (8%10) (dia ’i’ (p1 0))) --> (l (5%10) (dia ’i’ (p1 0))))

(with syntactic sugar dia c phi = neg (HML0 c (neg phi)) and box c phi =
HML0 c phi for HML box and diamond, l = PML1 for the probabilistic Lp operator,
and p1 for propositional variables). CoLoSS correctly finds that this (admittedly
simple) formula is provable. As a second example, we consider the logic of proba-
bilistic coalitions where coalitions of agents can only force probability distributions
over facts. This is expressed by the gluing PC (for proabilistic coalitions) above. We
obtain a two-sorted language similar to the logic of Segala systems

Lc 3 φ ::= > | φ1 ∧ φ2 | ¬φ | [C]ψ (coalition formulas; ψ ∈ Lp, C ⊆ N)
Lp 3 ψ ::= > | ψ1 ∧ ψ2 | ¬ψ | Lqφ (probabilistic formulas; φ ∈ Lc, q ∈ [0, 1] ∩Q)

where N is the set of all agents as in Section 1. Using syntactic sugar for the
modal operators and propositional varaiables, we can e.g. check the provability or
satisfiability of the formula

phi = cbox [0, 2, 4] (l 0.5 p0) /\ cbox [1, 3, 5] (l 0.5 p1)
--> cbox [0, 1, 2, 3, 4, 5] (l 0.25 (p0 /\ p1))

that asserts that two disjoint coalitions can join forces to yield the combination of
their individual returns with the product of the respective probabilities. However,
as (the denotations of) the propositional variables p0 and p1 are in general not
independent events, this formula is not provable (although of course satisfiable).
However, if we specify that, under the given lower bounds for the respective prob-
abilities of p0 and p1, the conjunction of p0 and p1 holds with probability at least
0.4 in every subsequent state of the strategic game by means of the formula

psi = cbox [] ((l 0.5 p0) /\ (l 0.5 p1) --> (l 0.4 (p0 /\ p1)))

then the formula phi --> psi is indeed provable.

5 Conclusion

We have laid out the design and implementation of the Coalgebraic Logic Sat-
isfiability Solver CoLoSS, which provides a generic and extensible framework for
satisfiability/validity checking in a wide variety of modal logics. Crucial implemen-
tation details include the use of the Haskell class mechanism to support genericity
over individual logics, and a code generation mechanism that facilitates the mod-
ular combination of logics. The main purpose of CoLoSS at its present stage of
development is to provide a proof of concept. The state of the tool is largely exper-
imental, and alternative options are being explored in terms of the overall design,
in particular concerning the handling of logic combination and the class interface
for modal logics. There has been some parallel development, and the two branches
are in the process of being fully merged; in particular, a generic modal logic parser

12

Calin et al.

is already available and will be integrated with the tool shortly, thus supplanting
the present style of entering formulas directly as Haskell code. (Note however that
representing formulas directly as code is a time-honored practice; e.g. the default
textual interface of RACER [3] expects formulas as LISP code.)

A major topic for future development is to increase the efficiency both of the
generic parts of the tool and of the specific logic instances. Generic optimiza-
tions will mainly concern propositional aspects; one may either move to proper
propositional tableaux and employ heuristic optimization strategies such as the
ones described in [6], or represent propositional layers in formulas efficiently as bi-
nary decision diagrams. Logic-specific heuristics to be explored include the use of
(integer) linear programming tools to reduce the search space for graded and proba-
bilistic modal logics. Once such optimization strategies are in place, benchmarking
will become an issue. Predefined benchmark suites that would allow evaluating the
performance of the tool in its main intended application area, namely non-Kripke
modal logics, seem to be hard to come by. The design of such benchmarks is there-
fore a further important topic of future research.

References

[1] Ĉırstea, C. and D. Pattinson, Modular construction of modal logics, Theoret. Comput. Sci. To appear.
Earlier version in P. Gardner, N. Yoshida, editors, Concurrency Theory, CONCUR 04 , vol. 3170 of
Lect. Notes Comput. Sci., pp. 258–275, Springer, 2004.

[2] Demri, S. and D. Lugiez, Presburger modal logic is only PSPACE-complete, in: U. Furbach and
N. Shankar, editors, Automated Reasoning, IJCAR 06, Lect. Notes Artificial Intelligence 4130 (2006),
pp. 541–556.

[3] Haarslev, V. and R. Mller, RACER system description, in: R. Goré, A. Leitsch and T. Nipkow, editors,
International Joint Conference on Automated Reasoning, IJCAR 2001, Lect. Notes Comput. Sci. 2083
(2001), pp. 701–705.

[4] Hansson, H. and B. Jonsson, A calculus for communicating systems with time and probabilities, in:
Real-Time Systems, RTSS 90 (1990), pp. 278–287.

[5] Heifetz, A. and P. Mongin, Probabilistic logic for type spaces, Games and Economic Behavior 35 (2001),
pp. 31–53.

[6] Horrocks, I. and P. F. Patel-Schneider, Optimising description logic subsumption, J. Logic Comput. 9
(1999), pp. 267–293.

[7] Jones, M. P., Type classes with functional dependencies, in: G. Smolka, editor, European Symposium
on Programming, ESOP 2000, Lect. Notes Comput. Sci. 1782 (2000), pp. 230–244.

[8] Jonsson, B., W. Yi and K. G. Larsen, Probabilistic extensions of process algebras, in: J. Bergstra,
A. Ponse and S. Smolka, editors, Handbook of Process Algebra, Elsevier, 2001 pp. 685–710.

[9] Larsen, K. and A. Skou, Bisimulation through probabilistic testing, Inform. Comput. 94 (1991), pp. 1–
28.

[10] Norell, U. and P. Jansson, Polytypic programming in haskell, in: P. W. Trinder, G. Michaelson and
R. Pena, editors, Implementation of Functional Languages, IFL 2003, Lect. Notes Comput. Sci. 3145
(2003), pp. 168–184.

[11] Olivetti, N. and G. L. Pozzato, CondLean: A theorem prover for conditional logics, in: M. C. Mayer
and F. Pirri, editors, Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX
2003, Lect. Notes Comput. Sci. 2796 (2003), pp. 264–270.

[12] Pacuit, E. and S. Salame, Majority logic, in: D. Dubois, C. Welty and M.-A. Williams, editors, Principles
of Knowledge Representation and Reasoning, KR 04 (2004), pp. 598–605.

[13] Pauly, M., A modal logic for coalitional power in games, J. Logic Comput. 12 (2002), pp. 149–166.

[14] Peyton-Jones, S., editor, “Haskell 98 Language and Libraries — The Revised Report,” Cambridge,
2003, also: J. Funct. Programming 13 (2003).

13

Calin et al.

[15] Schröder, L. and D. Pattinson, PSPACE reasoning for rank-1 modal logics, in: R. Alur, editor,
Logic in Computer Science, LICS 06, IEEE, 2006, pp. 231–240, extended version available on CoRR,
arxiv.org/abs/0706.4044.

[16] Schröder, L. and D. Pattinson, Modular algorithms for heterogeneous modal logics, in: L. Arge,
A. Tarlecki and C. Cachin, editors, Automata, Languages and Programming, ICALP 07, Lect. Notes
Comput. Sci. 4596 (2007), pp. 459–471.

[17] Segala, R., “Modelling and Verification of Randomized Distributed Real-Time Systems,” Ph.D. thesis,
Massachusetts Institute of Technology (1995).

[18] Segala, R. and N. Lynch, Probabilistic simulations for probabilistic processes, Nordic Journal of
Computing 2 (1995), pp. 250–273.

[19] Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, Pellet: A practical OWL-DL reasoner, J.
Web Semantics. To appear.

[20] Tsarkov, D. and I. Horrocks, FaCT++ description logic reasoner: System description, in: U. Furbach
and N. Shankar, editors, Int. Joint Conf. on Automated Reasoning, IJCAR 2006, Lecture Notes in
Artificial Intelligence 4130 (2006), pp. 292–297.

14

	Generic Validity Checking for Coalgebraic Modal Logics
	Implementation of the Generic PSPACE Algorithm
	Modular Satisfiability Checking for Composite Logics
	Provability Checking for Combined Logics
	Conclusion
	References

