Lines Matching refs:a0
251 double a0,a1,b0,b1;// coeffs in a[k] and b[k]
254 // a0*x(0)+b0*y(0)=r0 & 2*a0*a(0)+2*b0*b(0)=rr0
257 a0 = r0/dot(v0,V.at0())*v0[0]-rr0/2*v0[1];
262 a[k] = Linear(a0,a1);
557 * Below are basic functions dedicated to solving this assuming a0 and a1 !=0.
564 double a0=aa0,a1=aa1,c0=cc0,c1=cc1;
568 if (a0<0){a0=-a0; c0=-c0;}
569 double a = (a0<a1 ? a0 : a1);
590 solve_lambda0(double a0,double a1,double c0,double c1,
594 p[0] = Linear( a1*c0*c0+c1, a1*a0*(a0+ 2*c0) +a1*c0*c0 +c1 -1 );
595 p[1] = Linear( -a1*a0*(a0+2*c0), -a1*a0*(3*a0+2*c0) );
596 p[2] = Linear( a1*a0*a0 );
598 OptInterval domain = find_bounds_for_lambda0(a0,a1,c0,c1,insist_on_speeds_signs);
654 //solve: lambda1 = a0 lambda0^2 + c0
656 double a0,c0,a1,c1;
657 a0 = -d2M0xdM0/2/dM1xdM0;
662 if (fabs(a0)<epsilon){
667 lambda1.push_back( a0*c1*c1 + c0 );
670 vector<double> solns=solve_lambda0(a0,a1,c0,c1,insist_on_speed_signs);
673 double lbda1=c0+a0*lbda0*lbda0;