Lines Matching refs:by

3 Comments starting "#LT" or "#CLT" are by Chris Lusby Taylor who rewrote the engraving function in 2011.
20 within the area bounded by the line being tested and the two angle bisectors at
28 returned by csp_normalized_normal. Need to check for that.
33 10 Jun Changed all dimensions seen by user to be mm/inch, not pixels. This includes
37 Graphics now indicate Gcode toolpath, limited by min(tool diameter/2,max-dist)
51 it under the terms of the GNU General Public License as published by
99 ax,ay,bx,by,cx,cy,x0,y0=bezmisc.bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
101 dy=3*ay*(t**2)+2*by*t+cy
104 dy = 6*ay*t+2*by
109 print_("Slope error x = %s*t^3+%s*t^2+%s*t+%s, y = %s*t^3+%s*t^2+%s*t+%s, t = %s, dx==dy==0" % (ax,bx,cx,dx,ay,by,cy,dy,t))
144 (Generated by gcodetools from Inkscape.)
269 # you can assing any value to on_the_path, by dfault if point is on the path
277 ax,ay,bx,by,cx,cy,dx,dy = csp_parameterize(sp1,sp2)
374 ax,ay,bx,by,cx,cy,dx,dy = csp_parameterize(sp1,sp2)
383 f = (ax*t3+bx*t2+cx*t+dx)*(3*ax*t2+2*bx*t+cx) + (ay*t3+by*t2+cy*t+dy)*(3*ay*t2+2*by*t+cy)
384 df = (6*ax*t+2*bx)*(ax*t3+bx*t2+cx*t+dx) + (3*ax*t2+2*bx*t+cx)**2 + (6*ay*t+2*by)*(ay*t3+by*t2+cy*t+dy) + (3*ay*t2+2*by*t+cy)**2
503 ax,ay,bx,by,cx,cy,x0,y0 = bezmisc.bezierparameterize((csp[i][j-1][1],csp[i][j-1][2],csp[i][j][0],csp[i][j][1]))
509 y = ay*(root**3)+by*(root**2)+cy*root+y0
514 roots = cubic_solver(0, 3*ay, 2*by, cy) + [0,1]
519 y = ay*(root**3)+by*(root**2)+cy*root+y0
540 ax,ay,bx,by,cx,cy,dx,dy = bezmisc.bezierparameterize(a)
547 F[1] = ay*ta3+by*ta2+cy*ta+dy-ay1*tb3-by1*tb2-cy1*tb-dy1
550 F1[1][0] = 3*ay *ta2 + 2*by *ta + cy
619 ax,ay,bx,by,cx,cy,dx,dy = csp_parameterize(sp1,sp2)
628 f1y = 3*ay*t2+2*by*t+cy
630 f2y = 6*ay*t+2*by
655 ax,ay,bx,by,cx,cy,dx,dy = csp_parameterize(sp1,sp2)
662 f1y = 3*ay*t**2 + 2*by*t + cy
664 f2y = 6*ay*t + 2*by
685 ax,ay,bx,by,cx,cy,dx,dy = bezmisc.bezierparameterize(csp_segment_to_bez(sp1,sp2))
690 f1y = 3*ay*t**2 + 2*by*t + cy
692 f2y = 6*ay*t + 2*by
701 t1 = 2*(bx*ay-ax*by)*t+(ay*cx-ax*cy)
704 t1 = bx*ay-ax*by
721 ax,ay,bx,by,cx,cy,dx,dy = bezmisc.bezierparameterize((sp1[1],sp1[2],sp2[0],sp2[1]))
722 a = 3*ax*by-3*ay*bx
724 c = bx*cy-cx*by
753 ay,by,cy,dy = sp1[1][1], sp1[2][1], sp2[0][1], sp2[1][1]
755 x1, y1 = ax+(bx-ax)*t, ay+(by-ay)*t
756 x2, y2 = bx+(cx-bx)*t, by+(cy-by)*t
846 ax,ay,bx,by,cx,cy,x0,y0=bezmisc.bezierparameterize(bez)
848 b=coef1*by-coef2*bx
1160 ax,ay,bx,by,cx,cy,dx,dy=bezmisc.bezierparameterize((sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:]))
1163 f1y = 3*ay*t*t+2*by*t+cy
1555 ax,bx,cx,dx, ay,by,cy,dy = a[0][0],a[1][0],b[0][0],b[1][0], a[0][1],a[1][1],b[0][1],b[1][1]
1556 if (ax==bx and ay==by) or (cx==dx and cy==dy) : return False, 0, 0
1557 if (bx-ax)*(dy-cy)-(by-ay)*(dx-cx)==0 : # Lines are parallel
1559 tb = (bx-cx)/(dx-cx) if cx!=dx else (by-cy)/(dy-cy)
1560 tc = (cx-ax)/(bx-ax) if ax!=bx else (cy-ay)/(by-ay)
1561 td = (dx-ax)/(bx-ax) if ax!=bx else (dy-ay)/(by-ay)
1564 ta = ( (ay-cy)*(dx-cx)-(ax-cx)*(dy-cy) ) / ( (bx-ax)*(dy-cy)-(by-ay)*(dx-cx) )
1565 tb = ( ax-cx+ta*(bx-ax) ) / (dx-cx) if dx!=cx else ( ay-cy+ta*(by-ay) ) / (dy-cy)
1998 # Clip prev by arc
2008 # Clip next by arc
2184 # Split unclipped offset by intersection points into splitted_offset
3420 ### Arrangement: arranges paths by givven params
3577 self.OptionParser.add_option("", "--path-to-gcode-order", action="store", type="string", dest="path_to_gcode_order", default="path by path", help="Defines cutting order path by path or layer by layer.")
3593 self.OptionParser.add_option("", "--area-fill-shift", action="store", type="float", dest="area_fill_shift", default="0", help="Shift the lines by tool d * shift")
4603 if self.options.path_to_gcode_order == 'subpath by subpath':
4609 self.options.path_to_gcode_order = 'path by path'
4611 if self.options.path_to_gcode_order == 'path by path':
4630 else: # pass by pass
4784 # Split by the topmost point and join again
5207 #We can correct signs by noting that the dot product
5219 """LT find biggest circle we can engrave here, if constrained by line 2-3
5233 - with nx1,ny1 scaled by 1/cos(a) it finds circle centred on an angle bisector
5240 # by mitering, not rounding.
5247 #Start by converting coordinates to be relative to x1,y1
5253 #multiplied by the cos of the angle between them.
5279 """LT find biggest circle we can engrave here, constrained by point x2,y2
5284 - with nx,ny scaled by 1/cos(a) it finds circle centred on an angle bisector
5295 #Start by converting coordinates to be relative to x1,y1
5332 by=b[1]-a[1]
5339 if abs(dx*by-bx*dy)<limit and abs(dx*cy-cx*dy)<limit :
5417 By noting which other path segment is touched by the circles at each end,
5418 we can see if anything is to be gained by a further subdivision, since
5587 # corner normals are divided by cos(halfangle)
5617 bx,by,s=bisect((nx0,ny0),(nx1,ny1))
5619 nlLT[-1] += [[ [x0,y0],[bx,by], True, s]]
5650 bx,by,s=bisect((nx0,ny0),(nx1,ny1))
5651 nlLT[-1] += [[bLT[seg+1],[bx,by], True, 0.]]
6251 ax,ay,bx,by,cx,cy,dx,dy = csp_parameterize(sp1,sp2)
6253 roots += cubic_solver_real(0, 3*ay, 2*by, cy)
6407 # can be joined by one arc
6432 (Generated by gcodetools from Inkscape.)