Lines Matching refs:casin
30 #pragma weak __casin = casin
34 * dcomplex casin(dcomplex z);
41 * The principal value of complex inverse sine function casin(z),
44 * casin(z) = asin(B) + i sign(y) log (A + sqrt(A*A-1)),
66 * Special notes: if casin( x, y) = ( u, v), then
67 * casin(-x, y) = (-u, v),
68 * casin( x,-y) = ( u,-v),
69 * in general, we have casin(conj(z)) = conj(casin(z))
70 * casin(-z) = -casin(z)
71 * casin(z) = pi/2 - cacos(z)
74 * casin( 0 + i 0 ) = 0 + i 0
75 * casin( 0 + i NaN ) = 0 + i NaN
76 * casin( x + i inf ) = 0 + i inf for finite x
77 * casin( x + i NaN ) = NaN + i NaN with invalid for finite x != 0
78 * casin(inf + iy ) = pi/2 + i inf finite y
79 * casin(inf + i inf) = pi/4 + i inf
80 * casin(inf + i NaN) = NaN + i inf
81 * casin(NaN + i y ) = NaN + i NaN for finite y
82 * casin(NaN + i inf) = NaN + i inf
83 * casin(NaN + i NaN) = NaN + i NaN
145 * casin(x+i*y)=[
192 * casin(z) = asin(B) + i sign(y) log (A + sqrt(A*A-1)),
215 casin(dcomplex z) {
240 /* casin(inf + i inf) = pi/4 + i inf */
242 else /* casin(inf + i NaN) = NaN + i inf */
244 } else /* casin(inf + iy) = pi/2 + i inf */
250 * casin(NaN + i inf) = NaN + i inf
251 * casin(NaN + i NaN) = NaN + i NaN
257 /* casin(NaN + i y ) = NaN + i NaN */
268 /* casin(+0 + i 0 ) = 0 + i 0. */
273 if (ISINF(iy, ly)) { /* casin(x + i inf) = 0 + i inf */
276 } else { /* casin(x + i NaN) = NaN + i NaN */